Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Frances Shannon is active.

Publication


Featured researches published by M. Frances Shannon.


Journal of Immunology | 2001

Chromatin Remodeling, Measured by a Novel Real-Time Polymerase Chain Reaction Assay, Across the Proximal Promoter Region of the IL-2 Gene

Sudha Rao; Erik Procko; M. Frances Shannon

The structure of chromatin and its remodeling following activation are important aspects of the control of inducible gene transcription. The IL-2 gene is induced in a cell specific-manner in T cells following an antigenic stimulus. We show, using a novel real-time PCR assay, that significant chromatin remodeling of the IL-2 proximal promoter region occurred upon stimulation of both the murine EL-4 T cell line and primary CD4+ T cells. Chromatin remodeling appears to be limited to the first 300 bp of the proximal promoter region as measured by micrococcal nuclease and restriction enzyme accessibility. Time course studies indicated that chromatin remodeling was observed at 1.5 h postinduction and was maintained for up to 16 h. The remodeling is reversible upon removal of the stimulus. The region immediately upstream from the transcription start site, however, remains accessible for up to 16 h. Upon restimulation, remodeling occurs much more rapidly, consistent with a more rapid rise in IL-2 mRNA levels. Using a number of pharmacological inhibitors we show that remodeling is dependent on the presence of specific transcription factors, but not on the modification of histones. The development of this novel chromatin accessibility assay based on real-time PCR has allowed rapid, sensitive, and quantitative measurements on the IL-2 gene following cellular activation in both T cell lines and primary cells.


Journal of Experimental Medicine | 2009

c-Rel is required for the development of thymic Foxp3+ CD4 regulatory T cells

Iwao Isomura; Stephanie Palmer; Raelene J. Grumont; Karen L. Bunting; Gerard F. Hoyne; Nancy Wilkinson; Ashish Banerjee; Anna I Proietto; Raffi Gugasyan; Li-Li Wu; Alice McNally; Raymond J. Steptoe; Ranjeny Thomas; M. Frances Shannon; Steve Gerondakis

During thymopoiesis, a unique program of gene expression promotes the development of CD4 regulatory T (T reg) cells. Although Foxp3 maintains a pattern of gene expression necessary for T reg cell function, other transcription factors are emerging as important determinants of T reg cell development. We show that the NF-κB transcription factor c-Rel is highly expressed in thymic T reg cells and that in c-rel−/− mice, thymic T reg cell numbers are markedly reduced as a result of a T cell–intrinsic defect that is manifest during thymocyte development. Although c-Rel is not essential for TGF-β conversion of peripheral CD4+CD25− T cells into CD4+Foxp3+ cells, it is required for optimal homeostatic expansion of peripheral T reg cells. Despite a lower number of peripheral T reg cells in c-rel−/− mice, the residual peripheral c-rel−/− T reg cells express normal levels of Foxp3, display a pattern of cell surface markers and gene expression similar to those of wild-type T reg cells, and effectively suppress effector T cell function in culture and in vivo. Collectively, our results indicate that c-Rel is important for both the thymic development and peripheral homeostatic proliferation of T reg cells.


Journal of Immunology | 2003

c-Rel Is Required for Chromatin Remodeling Across the IL-2 Gene Promoter

Sudha Rao; Steve Gerondakis; Donna Woltring; M. Frances Shannon

IL-2 gene transcription occurs in an activation-dependent manner in T cells responding to TCR and CD28 activation. One of the critical events leading to increased IL-2 transcription is an alteration in chromatin structure across the 300-bp promoter region of the gene. We initially showed that IL-2 gene transcription in CD4+ primary T cells is dependent on the NF-κB family member, c-Rel, but not RelA. We found that c-Rel is essential for global changes in chromatin structure across the 300-bp IL-2 promoter in response to CD3/CD28 in primary CD4+ T cells, but not in response to pharmacological signals, paralleling the requirement for c-Rel in IL-2 mRNA and protein accumulation. Interestingly, measurement of activation-induced localized accessibility changes using restriction enzyme digestion revealed that accessibility close to the c-Rel binding site in the CD28RR region of the promoter is specifically dependent on c-Rel. In contrast, restriction enzyme sites located at a distance from the CD28RR behave independently of c-Rel. These results suggest a nonredundant role for c-Rel in generating a correctly remodeled chromatin state across the IL-2 promoter and imply that the strength of the signal determines the requirement for c-Rel.


Immunity | 1996

High Mobility Group Protein I(Y) Is Required for Function and for c-Rel Binding to CD28 Response Elements within the GM-CSF and IL-2 Promoters

S. Roy Himes; Leeanne S. Coles; Raymond Reeves; M. Frances Shannon

CD28 response elements (CD28REs) within cytokine promoters are variant NF-kappaB-binding sites and are essential for transcription in response to CD28 receptor activation in T cells. We show that the CK-1 element (CD28RE) within the GM-CSF promoter binds the RelA and c-Rel transcription factors in response to CD28 activation. We further show that the high mobility group protein HMG I(Y) can bind to the CD28REs of both GM-CSF and IL-2 and that this binding is critical for c-Rel, but not RelA, binding. A second NF-kappaB site in the GM-CSF promoter that binds p50 and RelA, but neither c-Rel nor HMG I(Y), failed to respond to CD28 activation. Expression of HMG I or c-Rel antisense RNA inhibited CD28 activation of the IL-2 and GM-CSF promoters, implying that HMG I(Y) enhancement of c-Rel binding plays an important role in the activity of the CD28REs.


Molecular and Cellular Biology | 2005

Histone Dynamics on the Interleukin-2 Gene in Response to T-Cell Activation

Xinxin Chen; Jun Wang; Donna Woltring; Steve Gerondakis; M. Frances Shannon

ABSTRACT Several models have been proposed for the mechanism of chromatin remodelling across the promoters of inducible genes in mammalian cells. The most commonly held model is one of cooccupation where histone proteins are modified by acetylation or phosphorylation and nucleosomes are remodelled, allowing the assembly of transcription factor complexes. Using chromatin immunoprecipitation, we observed an apparent decrease of histone acetylation and phosphorylation signals at the proximal promoter region of the inducible interleukin-2 and granulocyte-macrophage colony-stimulating factor genes in response to T-cell activation. We showed that this apparent decrease was due to a loss of histone H3 and H4 proteins corresponding to a decrease in nucleosome occupation of the promoter. This histone loss is reversible; it is dependent on the continual presence of appropriate activating signals and transcription factors and is not dependent on the acetylation status of the histone proteins. These data show for the first time that histone proteins are lost from a mammalian promoter upon activation of transcription and support a model of activation-dependent disassembly and reassembly of nucleosomes.


Journal of Immunology | 2010

Genome-Wide Identification of Human FOXP3 Target Genes in Natural Regulatory T Cells

Timothy J. Sadlon; Bridget Gabrielle Wilkinson; Stephen Pederson; Cheryl Y. Brown; Suzanne Bresatz; Tessa Gargett; Elizabeth Melville; Kaimen Peng; Richard J. D'Andrea; Gary G Glonek; Gregory J. Goodall; Heddy Zola; M. Frances Shannon; Simon C. Barry

The transcription factor FOXP3 is essential for the formation and function of regulatory T cells (Tregs), and Tregs are essential for maintaining immune homeostasis and tolerance. This is demonstrated by a lethal autoimmune defect in mice lacking Foxp3 and in immunodysregulation polyendocrinopathy enteropathy X-linked syndrome patients. However, little is known about the molecular basis of human FOXP3 function or the relationship between direct and indirect targets of FOXP3 in human Tregs. To investigate this, we have performed a comprehensive genome-wide analysis for human FOXP3 target genes from cord blood Tregs using chromatin immunoprecipitation array profiling and expression profiling. We have identified 5579 human FOXP3 target genes and derived a core Treg gene signature conserved across species using mouse chromatin immunoprecipitation data sets. A total of 739 of the 5579 FOXP3 target genes were differentially regulated in Tregs compared with Th cells, thus allowing the identification of a number of pathways and biological functions overrepresented in Tregs. We have identified gene families including cell surface molecules and microRNAs that are differentially expressed in FOXP3+ Tregs. In particular, we have identified a novel role for peptidase inhibitor 16, which is expressed on the cell surface of >80% of resting human CD25+FOXP3+ Tregs, suggesting that in conjunction with CD25 peptidase inhibitor 16 may be a surrogate surface marker for Tregs with potential clinical application.


Journal of Immunology | 2007

Genome-wide analysis of gene expression in T cells to identify targets of the NF-kappa B transcription factor c-Rel

Karen L. Bunting; Sudha Rao; Kristine Hardy; Donna Woltring; Gareth Denyer; Jun Wang; Steve Gerondakis; M. Frances Shannon

It is well established that the NF-κB family of transcription factors serves a major role in controlling gene expression in response to T cell activation, but the genome-wide roles of individual family members remain to be determined. c-Rel, a member of the NF-κB family, appears to play a specific role in T cell function because T cells from c-Rel−/− animals are defective in their response to immune signals. We have used expression profiling to identify sets of genes that are affected by either deletion or overexpression of c-Rel in T cells. Very few of these genes exhibit a strong requirement for c-Rel; rather, c-Rel appears to modulate the expression of a large number of genes in these cells. The sets of c-Rel-affected genes are significantly enriched for genes containing consensus NF-κB/Rel sites in their proximal promoter regions. In addition, their promoters contain a higher average density of NF-κB/Rel sites compared with all genes represented on the microarrays. A transcriptional module comprised of two closely spaced c-Rel consensus sites is found with higher frequency in the c-Rel-affected gene sets and may represent an important control module for genes regulated by c-Rel or other NF-κB family members. We confirmed the importance of these findings on a subgroup of genes by using quantitative PCR to monitor gene expression as well as in vitro c-Rel/DNA binding assays and luciferase reporter assays. The c-Rel-regulated genes identified here support a role for c-Rel in inflammatory responses as well as in the promotion of cell growth and survival.


Journal of Immunology | 2000

The Role of High-Mobility Group I(Y) Proteins in Expression of IL-2 and T Cell Proliferation

S. Roy Himes; Raymond Reeves; Joanne Attema; Mark S. Nissen; Ying Li; M. Frances Shannon

The high-mobility group I(Y) (HMGI(Y)) family of proteins plays an important architectural role in chromatin and have been implicated in the control of inducible gene expression. We have previously shown that expression of HMGI antisense RNA in Jurkat T cells inhibits the activity of the IL-2 promoter. Here we have investigated the role of HMGI(Y) in controlling IL-2 promoter-reporter constructs as well as the endogenous IL-2 gene in both Jurkat T cells and human PBL. We found that the IL-2 promoter has numerous binding sites for HMGI(Y), which overlap or are adjacent to the known transcription factor binding sites. HMGI(Y) modulates binding to the IL-2 promoter of at least three transcription factor families, AP-1, NF-AT and NF-κB. By using a mutant HMGI that cannot bind to DNA but can still interact with the transcription factors, we found that DNA binding by HMGI was not essential for the promotion of transcription factor binding. However, the non-DNA binding mutant acts as a dominant negative protein in transfection assays, suggesting that the formation of functional HMGI(Y)-containing complexes requires DNA binding as well as protein:protein interactions. The alteration of HMGI(Y) levels affects IL-2 promoter activity not only in Jurkat T cells but also in PBL. Importantly, we also show here that expression of the endogenous IL-2 gene as well as proliferation of PBL are affected by changes in HMGI(Y) levels. These results demonstrate a major role for HMGI(Y) in IL-2 expression and hence T cell proliferation.


Journal of Experimental Medicine | 2003

Changes in chromatin accessibility across the GM-CSF promoter upon T cell activation are dependent on nuclear factor kappaB proteins.

Adele F. Holloway; Sudha Rao; Xinxin Chen; M. Frances Shannon

Granulocyte/macrophage colony-stimulating factor (GM-CSF) is a key cytokine in myelopoiesis and aberrant expression is associated with chronic inflammatory disease and myeloid leukemias. This aberrant expression is often associated with constitutive nuclear factor (NF)-κB activation. To investigate the relationship between NF-κB and GM-CSF transcription in a chromatin context, we analyzed the chromatin structure of the GM-CSF gene in T cells and the role of NF-κB proteins in chromatin remodeling. We show here that chromatin remodeling occurs across a region of the GM-CSF gene between −174 and +24 upon T cell activation, suggesting that remodeling is limited to a single nucleosome encompassing the proximal promoter. Nuclear NF-κB levels appear to play a critical role in this process. In addition, using an immobilized template assay we found that the ATPase component of the SWI/SNF chromatin remodeling complex, brg1, is recruited to the GM-CSF proximal promoter in an NF-κB–dependent manner in vitro. These results suggest that chromatin remodeling across the GM-CSF promoter in T cells is a result of recruitment of SWI/SNF type remodeling complexes by NF-κB proteins binding to the CD28 response region of the promoter.


Human Genetics | 1988

Interleukin 4 is at 5q31 and interleukin 6 is at 7p15

Grant R. Sutherland; Elizabeth Baker; David F. Callen; V.J. Hyland; Gordon G. Wong; Steven C. Clark; Simon S. Jones; Lisa K. Eglinton; M. Frances Shannon; Angel F. Lopez; Mathew A. Vadas

SummaryDNA probes to the human interleukin 4 (IL4) and interleukin 6 (IL6) genes have been used for in situ hybridization to normal human chromosomes and Southern blot analysis of a series of mouse-human hybrid cell lines. IL4 maps to 5q31, the same location as IL5 and other haemopoietic growth factor genes. IL6 maps to 7p15. The significance of these locations is discussed.

Collaboration


Dive into the M. Frances Shannon's collaboration.

Top Co-Authors

Avatar

Sudha Rao

University of Canberra

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jun Wang

Australian National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Leeanne S. Coles

Australian National University

View shared research outputs
Top Co-Authors

Avatar

S. Roy Himes

University of Queensland

View shared research outputs
Top Co-Authors

Avatar

Raymond Reeves

Washington State University

View shared research outputs
Top Co-Authors

Avatar

Alice McNally

University of Queensland

View shared research outputs
Researchain Logo
Decentralizing Knowledge