Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where S Gebauer is active.

Publication


Featured researches published by S Gebauer.


Astronomy and Astrophysics | 2011

Potential biosignatures in super-Earth atmospheres - I. Spectral appearance of super-Earths around M dwarfs

H. Rauer; S Gebauer; Philip von Paris; J. Cabrera; M Godolt; J L Grenfell; A. R. Belu; Franck Selsis; P. Hedelt; Franz Schreier

Atmospheric temperature and mixing ratio profiles of terres trial planets vary with the spectral energy flux distribution for di fferent types of M-dwarf stars and the planetary gravity. We investigate the resulting effects on the spectral appearance of molecular absorption bands, which are relevant as indicators for potential planetary habitability during primary and secondary eclipse for transiting terrestrial planets with Earth-like biomass emissi ons. Atmospheric profiles are computed using a plane-parallel, 1D climate model coupled with a chemistry model. We then calculate simulated spectra using a line-by-line radiative transfer model. We find that emission spectra during secondary eclipse show i ncreasing absorption of methane, water, and ozone for planets orbiting quiet M0-M3 dwarfs and the active M-type star AD Leo compared with solar-type central stars. However, for planets orbiting very cool and quiet M dwarfs (M4 to M7), increasing temperatures in the mid-atmosphere lead to reduced absorption signals, which impedes the detection of molecules in these scenarios. Transmission spectra during primary eclipse show strong absorption features of CH4, N2O and H2O for planets orbiting quiet M0-M7 stars and AD Leo. The N2O absorption of an Earth-sized planet orbiting a quiet M7 star can even be as strong as the CO2 signal. However, ozone absorption decreases for planets orbiting these cool central stars owing to chemical effects in the atmosphere. To investigate the effect on the spectroscopic detection of absorption bands with potential future satellite missions, we compute signal-to-noise-ratios (SNR) for a James Webb Space Telescope (JWST)-like aperture telescope.


Astronomy and Astrophysics | 2010

Clouds in the atmospheres of extrasolar planets. I. Climatic effects of multi-layered clouds for Earth-like planets and implications for habitable zones

D Kitzmann; A. B. C. Patzer; P von Paris; Mareike Godolt; Barbara Stracke; S Gebauer; J L Grenfell; H. Rauer

The effects of multi-layered clouds in the atmospheres of Earth-like planets orbiting different types of stars are studied. The radiative effects of cloud particles are directly correlated with their wavelength-dependent optical properties. Therefore the incident stellar spectra may play an important role for the climatic effect of clouds. We discuss the influence of clouds with mean properties measured in the Earths atmosphere on the surface temperatures and Bond albedos of Earth-like planets orbiting different types of main sequence dwarf stars.


Astronomy and Astrophysics | 2013

Spectral features of Earth-like planets and their detectability at different orbital distances around F, G, and K-type stars

Pascal Hedelt; P von Paris; M Godolt; S Gebauer; J L Grenfell; H. Rauer; Franz Schreier; Franck Selsis; Thomas Trautmann

Context. In recent years, more and more transiting terrestrial extrasolar planets have been found. Spectroscopy already yielded the detection of molecular absorption bands in the atmospheres of Jupiter and Neptune-sized exoplanets. Detecting spectral features in the atmosphere of terrestrial planets is the next great challenge for exoplanet characterization. Aims. We investigate the spectral appearance of Earth-like exoplanets in the habitable zone (HZ) of different main sequence (F, G, and K-type) stars at different orbital distances. We furthermore discuss for which of these scenarios biomarker absorption bands and related compounds may be detected during primary or secondary transit with near-future telescopes and instruments. Methods. Atmospheric profiles from a 1D cloud-free atmospheric climate-photochemistry model were used to compute primary and secondary eclipse infrared spectra. The spectra were analyzed taking into account different filter bandpasses of two photometric instruments planned to be mounted to the James Webb Space Telescope (JWST). We analyzed in which filters and for which scenarios molecular absorption bands are detectable when using the space-borne JWST or the ground-based European Extremely Large Telescope (E-ELT). Results. Absorption bands of carbon dioxide (CO2), water (H2O), methane (CH4) and ozone (O3) are clearly visible in both highresolution spectra as well as in the filters of photometric instruments. However, only during primary eclipse absorption bands of CO2, H2 Oa nd O 3 are detectable for all scenarios when using photometric instruments and an E-ELT-like telescope setup. CH4 is only detectable at the outer HZ of the K-type star since here the atmospheric modeling results in very high abundances. Since the detectable CO2 and H2O absorption bands overlap, separate bands need to be observed to prove their existence in the planetary atmosphere. In order to detect H2O in a separate band, a ratio S /N > 7 needs to be achieved for E-ELT observations, e.g. by co-adding at least 10 transit observations. Using a space-borne telescope like the JWST enables the detection of CO2 at 4.3 μm, which is not possible for ground-based observations due to the Earth’s atmospheric absorption. Hence combining observations of space-borne and groundbased telescopes might allow to detect the presence of the biomarker molecule O3 and the related compounds H2 Oa nd CO 2 in a planetary atmosphere. Other absorption bands using the JWST can only be detected for much higher S/Ns, which is not achievable by just co-adding transit observations since this would be far beyond the planned mission time of JWST.


Astronomy and Astrophysics | 2010

The extrasolar planet Gliese 581d: a potentially habitable planet?

P von Paris; S Gebauer; Mareike Godolt; J L Grenfell; Pascal Hedelt; D Kitzmann; A. B. C. Patzer; H. Rauer; Barbara Stracke

Aims. The planetary system around the M star Gliese 581 contains at least three close-in potentially low-mass planets, Gl 581c, d, and e. In order to address the question of the habitability of Gl 581d, we performed detailed atmospheric modeling studies for several planetary scenarios. Methods. A 1D radiative-convective model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. The model allows for changing surface pressures caused by evaporation/condensation of water and carbon dioxide. Furthermore, the treatment of the energy transport has been improved in the model to account in particular for high CO2, high-pressure Super-Earth conditions. Results. For four high-pressure scenarios of our study, the resulting surface temperatures were above 273 K, indicating a potential habitability of the planet. These scenarios include three CO2-dominated atmospheres (95% CO2 concentration with 5, 10, and 20 bar surface pressure) and a high-pressure CO2-enriched atmosphere (5% CO2 concentration with 20 bar surface pressure). For all other considered scenarios, the calculated Gl 581d surface temperatures were below the freezing point of water, suggesting that Gl 581d would not be habitable then. The results for our CO2-dominated scenarios confirm very recent model results by Wordsworth et al. (2010). However, our model calculations imply that also atmospheres that are not CO2-dominated (i.e., 5% vmr instead of 95% vmr) could result in habitable conditions for Gl 581d.


Astrobiology | 2013

Potential biosignatures in super-Earth atmospheres II. Photochemical responses.

John Lee Grenfell; S Gebauer; Mareike Godolt; K Palczynski; H. Rauer; Joachim Stock; P von Paris; Ralph Lehmann; Franck Selsis

Spectral characterization of super-Earth atmospheres for planets orbiting in the habitable zone of M dwarf stars is a key focus in exoplanet science. A central challenge is to understand and predict the expected spectral signals of atmospheric biosignatures (species associated with life). Our work applies a global-mean radiative-convective-photochemical column model assuming a planet with an Earth-like biomass and planetary development. We investigated planets with gravities of 1g and 3g and a surface pressure of 1 bar around central stars with spectral classes from M0 to M7. The spectral signals of the calculated planetary scenarios have been presented by in an earlier work by Rauer and colleagues. The main motivation of the present work is to perform a deeper analysis of the chemical processes in the planetary atmospheres. We apply a diagnostic tool, the Pathway Analysis Program, to shed light on the photochemical pathways that form and destroy biosignature species. Ozone is a potential biosignature for complex life. An important result of our analysis is a shift in the ozone photochemistry from mainly Chapman production (which dominates in Earths stratosphere) to smog-dominated ozone production for planets in the habitable zone of cooler (M5-M7)-class dwarf stars. This result is associated with a lower energy flux in the UVB wavelength range from the central star, hence slower planetary atmospheric photolysis of molecular oxygen, which slows the Chapman ozone production. This is important for future atmospheric characterization missions because it provides an indication of different chemical environments that can lead to very different responses of ozone, for example, cosmic rays. Nitrous oxide, a biosignature for simple bacterial life, is favored for low stratospheric UV conditions, that is, on planets orbiting cooler stars. Transport of this species from its surface source to the stratosphere where it is destroyed can also be a key process. Comparing 1g with 3g scenarios, our analysis suggests it is important to include the effects of interactive chemistry.


Astronomy and Astrophysics | 2011

Atmospheric studies of habitability in the Gliese 581 system

P von Paris; S Gebauer; M Godolt; H. Rauer; Barbara Stracke

Context. The M-type star Gliese 581 is orbited by at least one terrestrial planet candidate in the habitable zone, i.e. GL 581 d. Orbital simulations have shown that additional planets inside the habitable zone of GL 581 would be dynamically stable. Recently, two other planet candidates have been claimed, one of them in the habitable zone. Aims. In view of the ongoing search for planets around M stars that is expected to result in numerous detections of potentially habitable super-Earths, we take the GL 581 system as an example for investigating such planets. In contrast to previous studies of habitability in the GL 581 system, we use a consistent atmospheric model to assess surface conditions and habitability. Furthermore, we performed detailed atmospheric simulations for a much larger subset of potential planetary and atmospheric scenarios than previously considered. Methods. A 1D radiative-convective atmosphere model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. In these calculations, key parameters such as surface pressure and CO2 concentration, as well as orbital distance and planetary mass are varied. Results. Results imply that surface temperatures above freezing could be obtained, independent of the atmospheric scenarios considered here, at an orbital distance of 0.117 AU. For an orbital distance of 0.146 AU, CO2 concentrations as low as 10 times the present Earth’s value are sufficient to warm the surface above the freezing point of water. At 0.175 AU, only scenarios with CO2 concentrations of 5% and 95% were found to be habitable, so an additional super-Earth planet in the GL 581 system in the previously determined dynamical stability range would be considered a potentially habitable planet.


Archive | 2013

Detection of Habitable Planets and the Search for Life

H. Rauer; J. Cabrera; S Gebauer; John Lee Grenfell

One of the main scientific drivers for extrasolar planet research is the search for terrestrial planets in the habitable zone (HZ) and subsequently the detection of biosignatures indicating the presence of life. This goal is of fundamental importance to answer the question whether the Solar System is the only place in our universe that developed life, or if life is actually common in our galaxy and the biosphere on Earth is just one among many.


Astronomy and Astrophysics | 2010

The extrasolar planet GL 581 d: A potentially habitable planet?

P von Paris; S Gebauer; M Godolt; J L Grenfell; Pascal Hedelt; D Kitzmann; A. B. C. Patzer; H. Rauer; Barbara Stracke

Aims. The planetary system around the M star Gliese 581 contains at least three close-in potentially low-mass planets, Gl 581c, d, and e. In order to address the question of the habitability of Gl 581d, we performed detailed atmospheric modeling studies for several planetary scenarios. Methods. A 1D radiative-convective model was used to calculate temperature and pressure profiles of model atmospheres, which we assumed to be composed of molecular nitrogen, water, and carbon dioxide. The model allows for changing surface pressures caused by evaporation/condensation of water and carbon dioxide. Furthermore, the treatment of the energy transport has been improved in the model to account in particular for high CO2, high-pressure Super-Earth conditions. Results. For four high-pressure scenarios of our study, the resulting surface temperatures were above 273 K, indicating a potential habitability of the planet. These scenarios include three CO2-dominated atmospheres (95% CO2 concentration with 5, 10, and 20 bar surface pressure) and a high-pressure CO2-enriched atmosphere (5% CO2 concentration with 20 bar surface pressure). For all other considered scenarios, the calculated Gl 581d surface temperatures were below the freezing point of water, suggesting that Gl 581d would not be habitable then. The results for our CO2-dominated scenarios confirm very recent model results by Wordsworth et al. (2010). However, our model calculations imply that also atmospheres that are not CO2-dominated (i.e., 5% vmr instead of 95% vmr) could result in habitable conditions for Gl 581d.


Icarus | 2011

Sensitivity of Biomarkers to Changes in Chemical Emissions in the Earth's Proterozoic Atmosphere

J L Grenfell; S Gebauer; P von Paris; M Godolt; Pascal Hedelt; A. B. C. Patzer; Barbara Stracke; H. Rauer


Planetary and Space Science | 2014

Sensitivity of Biosignatures on Earth-like Planets orbiting in the Habitable Zone of Cool M-Dwarf Stars to varying Stellar UV Radiation and Surface Biomass Emissions

J L Grenfell; S Gebauer; Philip von Paris; Mareike Godolt; H. Rauer

Collaboration


Dive into the S Gebauer's collaboration.

Top Co-Authors

Avatar

J L Grenfell

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

H. Rauer

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

M Godolt

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

P von Paris

German Aerospace Center

View shared research outputs
Top Co-Authors

Avatar

B Patzer

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

D Kitzmann

Technical University of Berlin

View shared research outputs
Top Co-Authors

Avatar

Heike Rauer

German Aerospace Center

View shared research outputs
Researchain Logo
Decentralizing Knowledge