M.H.P. van Rijen
Utrecht University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.H.P. van Rijen.
American Journal of Sports Medicine | 2013
J.E.J. Bekkers; A.I. Tsuchida; M.H.P. van Rijen; Lucienne A. Vonk; Wouter J.A. Dhert; Daniël B.F. Saris
Background: Autologous chondrocyte implantation (ACI) is traditionally a 2-step procedure used to repair focal articular cartilage lesions. With use of a combination of chondrons (chondrocytes in their own territorial matrix) and mesenchymal stromal cells (MSCs), ACI could be innovated and performed in a single step, as sufficient cells would be available to fill the defect within a 1-step surgical procedure. Chondrons have been shown to have higher regenerative capacities than chondrocytes without such a pericellular matrix. Purpose: To evaluate cartilage formation by a combination of chondrons and MSCs in vitro and in both small and large animal models. Study Design: Controlled laboratory study. Methods: Chondrons and MSCs were cultured at different ratios in vitro containing 0%, 5%, 10%, 20%, 50%, or 100% chondrons (n = 3); embedded in injectable fibrin glue (Beriplast); and implanted subcutaneously in nude mice (n = 10; ratios of 0%, 5%, 10%, and 20% chondrons). Also, in a 1-step procedure, a combination of chondrons and MSCs was implanted in a freshly created focal articular cartilage lesion (10% chondrons) in goats (n = 8) and compared with microfracture. The effect of both treatments, after 6-month follow-up, was evaluated using biochemical glycosaminoglycan (GAG) and GAG/DNA analysis and scored using validated scoring systems for macroscopic and microscopic defect repairs. Results: The addition of MSCs to chondron cultures enhanced cartilage-specific matrix production as reflected by a higher GAG production (P < .03), both in absolute levels and normalized to DNA content, compared with chondrocyte and 100% chondron cultures. Similar results were observed after 4 weeks of subcutaneous implantation in nude mice. Treatment of freshly created cartilage defects in goats using a combination of chondrons and MSCs in Beriplast resulted in better microscopic, macroscopic, and biochemical cartilage regeneration (P ≤ .02) compared with microfracture treatment. Conclusion: The combination of chondrons and MSCs increased cartilage matrix formation, and this combination of cells was safely applied in a goat model for focal cartilage lesions, outperforming microfracture. Clinical Relevance: This study describes the bench-to-preclinical development of a new cell-based regenerative treatment for focal articular cartilage defects that outperforms microfracture in goats. In addition, it is a single-step procedure, thereby making the expensive cell expansion and reimplantation of dedifferentiated cells, as in ACI, redundant.
Osteoarthritis and Cartilage | 2010
J.P.H.J. Rutges; R.A. Duit; J.A. Kummer; F. C. Oner; M.H.P. van Rijen; Abraham J. Verbout; René M. Castelein; Wouter J.A. Dhert; Laura B. Creemers
BACKGROUND In degenerative intervertebral discs (IVDs) collagen type X expression and calcifications have been demonstrated, resembling advanced osteoarthritis (OA), which is associated with hypertrophic differentiation, characterized by the production of collagen type X, Runt-related transcription factor 2 (Runx2), osteoprotegerin (OPG), alkaline phosphatase (ALP) and calcifications. OBJECTIVE The aim of this study was to determine if hypertrophic differentiation occurs during IVD degeneration. METHODS IVDs from all Thompson degeneration grades were prepared for histology, extraction of nucleus pulposus (NP) and annulus fibrosis (AF) tissue (N=50) and micro-CT (N=27). The presence of collagen type X, OPG and Runx2 was determined by immunohistochemistry, with OPG levels also determined by Enzyme-linked immunosorbent assay (ELISA). The presence of calcification was determined by micro-CT, von Kossa and Alizarin Red staining. RESULTS Immunohistochemical staining for collagen type X, OPG, Runx2 appeared more intense in the NP of degenerative compared to healthy IVD samples. OPG levels correlated significantly with degeneration grade (NP: P<0.000; AF: P=0.002) and the number of microscopic calcifications (NP: P=0.002; AF: P=0.008). The extent of calcifications on micro-CT also correlated with degeneration grade (NP: P<0.001, AF: P=0.001) as did von Kossa staining (NP: P=0.015, AF: P=0.016). ALP staining was only incidentally seen in the transition zone of grades IV and V degenerated IVDs. CONCLUSION This study for the first time demonstrates that hypertrophic differentiation occurs during IVD degeneration, as shown by an increase in OPG levels, the presence of ALP activity, increased immunopositivity of Runx2 and collagen type X.
Osteoarthritis and Cartilage | 2010
Ruud Custers; Wouter J.A. Dhert; Daniël B.F. Saris; Abraham J. Verbout; M.H.P. van Rijen; S.C. Mastbergen; F.P. Lafeber; Laura B. Creemers
OBJECTIVE The purpose of the current study was to investigate the feasibility of applying defect-size femoral implants for the treatment of localized cartilage defects in a 1-year follow-up model. METHODS In 13 goats, a medial femoral condyle defect was created in both knees. Defects were randomly treated by immediate placement of an oxidized zirconium (OxZr) (n=9) or cobalt-chromium (CoCr) implant (n=9) or left untreated (n=8). Six un-operated knee joints served as a control. Animals were sacrificed at 52 weeks. Joints were evaluated macroscopically. Cartilage quality was analyzed macroscopically and microscopically and cartilage repair of untreated defects was scored microscopically. Glycosaminoglycan (GAG) content, release and synthesis were measured in tissue and medium. Implant osseointegration was measured by automated histomorphometry. RESULTS Cartilage repair score of the defects was 13.3+/-3.0 out of 24 points (0=no repair, 24=maximal repair). Articular evaluation scores decreased (indicative of degeneration) in untreated defects and in defects treated with either implant (P<0.05). Macroscopical, microscopical and biochemical analysis showed that the presence of untreated defects and the implants caused considerable degeneration of medial tibial plateau, and to a lesser extent of the lateral compartment. Mean bone-implant contact was extensive and not different between materials (39.5+/-28.1% for OxZr and 42.3+/-31.5% for CoCr) (P=0.873). CONCLUSIONS Considerable cartilage degeneration was induced in the articulating cartilage of the medial tibial plateau 1 year after creating an osteochondral defect in the medial femoral condyle. Treating this defect with a small metal implant, made of either OxZr or CoCr, could not prevent this degeneration. Further optimization of defect-size implants and their placement is required to make this the therapy of choice for the treatment of local cartilage defects.
Clinical Orthopaedics and Related Research | 2017
W. Boot; Debby Gawlitta; P. G. J. Nikkels; Behdad Pouran; M.H.P. van Rijen; Wouter J.A. Dhert; H. Ch. Vogely
BackgroundUncemented orthopaedic implants rely on the bone-implant interface to provide stability, therefore it is essential that a coating does not interfere with the bone-forming processes occurring at the implant interface. In addition, local application of high concentrations of antibiotics for prophylaxis or treatment of infection may be toxic for osteoblasts and could impair bone growth.Questions/Purposes In this animal study, we investigated the effect of a commercially available hydrogel, either unloaded or loaded with 2% vancomycin. We asked, does unloaded hydrogel or hydrogel with vancomycin (1) interfere with bone apposition and timing of bone deposition near the implant surface; and (2) induce a local or systemic inflammatory reaction as determined by inflammation around the implant and hematologic parameters.MethodsIn 18 New Zealand White rabbits, an uncoated titanium rod (n = 6), a rod coated with unloaded hydrogel (n = 6), or a rod coated with 2% vancomycin-loaded hydrogel (n = 6) was implanted in the intramedullary canal of the left tibia. After 28 days, the bone volume fraction near the implant was measured with microCT analysis, inflammation was semiquantitatively scored on histologic sections, and timing of bone apposition was followed by semiquantitative scoring of fluorochrome incorporation on histologic sections. Two observers, blinded to the treatment, scored the sections and reconciled their scores if there was a disagreement. The hematologic inflammatory reaction was analyzed by measuring total and differential leukocyte counts and erythrocyte sedimentation rates in blood. With group sizes of six animals per group, we had 79% power to detect a difference of 25% in histologic scoring for infection and inflammation.ResultsNo differences were found in the amount of bone apposition near the implant in the No Gel group (48.65% ± 14.95%) compared with the Gel group (59.97% ± 5.02%; mean difference [MD], 11.32%; 95% CI, −3.89% to 26.53%; p = 0.16) or for the Van2 group (56.12% ± 10.06%; MD, 7.46; 95% CI, −7.75 to 22.67; p = 0.40), with the numbers available. In addition, the scores for timing of bone apposition did not differ between the No Gel group (0.50 ± 0.55) compared with the Gel group (0.33 ± 0.52; MD, −0.17; 95% CI, −0.86 to 0.53; p = 0.78) or the Van2 group (0.83 ± 0.41; MD, 0.33; 95% CI, −0.36 to 1.03; p = 0.42). Furthermore, we detected no differences in the histopathology scores for inflammation in the No Gel group (2.33 ± 1.67) compared with the Gel group (3.17 ± 1.59; MD, 0.83; 95% CI, −0.59 to 2.26; p = 0.31) or to the Van2 group (2.5 ± 1.24; MD, 0.17; 95% CI, −1.26 to 1.59; p = 0.95). Moreover, no differences in total leukocyte count, erythrocyte sedimentation rate, and neutrophil, monocyte, eosinophil, basophil, and lymphocyte counts were present between the No Gel or Van2 groups compared with the Gel control group, with the numbers available.ConclusionThe hydrogel coated on titanium implants, unloaded or loaded with 2% vancomycin, had no effect on the volume or timing of bone apposition near the implant, and did not induce an inflammatory reaction in vivo, with the numbers available.Clinical relevanceAntibiotic-loaded hydrogel may prove to be a valuable option to protect orthopaedic implants from bacterial colonization. Future clinical safety studies will need to provide more evidence that this product does not impair bone formation near the implant and prove the safety of this product.
Tissue Engineering Part A | 2014
J.E.J. Bekkers; Daniël B.F. Saris; A.I. Tsuchida; M.H.P. van Rijen; W.J.A. Dhert; Laura B. Creemers
OBJECTIVE This study aimed to investigate the regenerative capacity of chondrocytes derived from debrided defect cartilage and healthy cartilage from different regions in the joint to determine the best cell source for regenerative cartilage therapies. METHODS Articular cartilage was obtained from Outerbridge grade III and IV cartilage lesions and from macroscopically healthy weight-bearing and nonweight-bearing (NWB) locations in the knee. Chondrocytes isolated from all locations were either pelleted directly (P0 pellets) or after expansion (P2 pellets) and analyzed for glycosaminoglycan (GAG), DNA, and cartilage-specific gene expression. Harvested cartilage samples and cultured pellets were also analyzed by Safranin O histology and immunohistochemistry for collagen I, II, and X. Immunohistochemical stainings were quantified using a computerized pixel-intensity staining segmentation method. RESULTS After 4 weeks of culture, the P0 pellets derived from grade III or healthy weight-bearing chondrocytes contained more (p<0.015) GAG and GAG normalized per DNA compared to those from grade IV and NWB locations. After expansion, these differences were lost. Cartilage-specific gene expression was higher (p<0.04) in P0 pellets from grade III chondrocytes compared to grade IV chondrocytes. Semiquantitative immunohistochemistry showed a more intense (p<0.033) collagen I and X staining for grade IV debrided cartilage compared to grade III and weight-bearing cartilage. Also, collagen type X staining intensity was higher (p<0.033) in NWB cartilage compared to grade III and weight-bearing regions. CONCLUSION Chondrocytes derived from debrided cartilage perform better than cells from the NWB biopsy site, however, this difference is lost upon expansion. Based thereon, the debrided defect cartilage could be a viable donor site for regenerative cartilage surgery.
Osteoarthritis and Cartilage | 2007
Ruud Custers; Laura B. Creemers; Abraham J. Verbout; M.H.P. van Rijen; Wouter J.A. Dhert; Daniël B.F. Saris
Tissue Engineering | 2006
K.G. Auw Yang; D.B. Saris; Ruth E. Geuze; Y.J.M. van der Helm; M.H.P. van Rijen; Abraham J. Verbout; W.J.A. Dhert; Laura B. Creemers
Osteoarthritis and Cartilage | 2006
Kiem Gie Auw Yang; Daniël B.F. Saris; Ruth E. Geuze; M.H.P. van Rijen; Y.J.M. van der Helm; Abraham J. Verbout; Laura B. Creemers; Wouter J.A. Dhert
Osteoarthritis and Cartilage | 2007
Ruud Custers; Wouter J.A. Dhert; M.H.P. van Rijen; Abraham J. Verbout; Laura B. Creemers; Daniël B.F. Saris
Osteoarthritis and Cartilage | 2013
J.E.J. Bekkers; Laura B. Creemers; A.I. Tsuchida; M.H.P. van Rijen; Ruud Custers; Wouter J.A. Dhert; Daniël B.F. Saris