M.J. Carson
University of Sheffield
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M.J. Carson.
Astroparticle Physics | 2007
D. Yu. Akimov; G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; A. A. Burenkov; M.J. Carson; H. Chagani; V. Chepel; D. Cline; D. Davidge; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; C. Chag; R. Hollingworth; A.S. Howard; W.G. Jones; M. Joshi; K. Mavrokoridis; E.V. Korolkova; A. G. Kovalenko; V.A. Kudryavtsev; I. S. Kuznetsov; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot
We present details of the technical design, manufacture and testing of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase xenon detector which measures both the scintillation light and the ionisation charge generated in the liquid by interacting particles and radiation. The instrument design is driven by both the physics requirements and by the technology requirements surrounding the use of liquid xenon. These include considerations of key performance parameters, such as the efficiency of scintillation light collection, restrictions placed on the use of materials to control the inherent radioactivity levels, attainment of high vacuum levels and chemical contamination control. The successful solution has involved a number of novel design and manufacturing features which will be of specific use to future generations of direct dark matter search experiments as they struggle with similar and progressively more demanding requirements.
Physics Letters B | 2005
G. J. Alner; H.M. Araújo; G. Arnison; J. C. Barton; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; D. Davidge; Gavin Davies; J.C. Davies; E. Daw; J. Dawson; Christopher D. P. Duffy; T. Durkin; T. Gamble; S.P. Hart; R. Hollingworth; G.J. Homer; A.S. Howard; I. Ivaniouchenkov; W.G. Jones; M. Joshi; J. Kirkpatrick; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; M J Lehner; J.D. Lewin; P. K. Lightfoot
The NAIAD experiment (NaI Advanced Detector) for WIMP dark matter searches at the Boulby Underground Laboratory (North Yorkshire, UK) ran from 2000 until 2003. A total of 44.9 kg x years of data collected with 2 encapsulated and 4 unencapsulated NaI(Tl) crystals with high light yield were included in the analysis. We present final results of this analysis carried out using pulse shape discrimination. No signal associated with nuclear recoils from WIMP interactions was observed in any run with any crystal. This allowed us to set upper limits on the WIMP-nucleon spin-independent and WIMP-proton spin-dependent cross-sections. The NAIAD experiment has so far imposed the most stringent constraints on the spin-dependent WIMP-proton cross-section.
Astroparticle Physics | 2004
M.J. Carson; J.C. Davies; E. Daw; R. Hollingworth; V.A. Kudryavtsev; T.B. Lawson; P. K. Lightfoot; J.E. McMillan; B. Morgan; S. M. Paling; M. Robinson; N.J.C. Spooner; D. R. Tovey
Abstract Simulations of the neutron background for future large-scale particle dark matter detectors are presented. Neutrons were generated in rock and detector elements via spontaneous fission and (α,n) reactions, and by cosmic-ray muons. The simulation techniques and results are discussed in the context of the expected sensitivity of a generic liquid xenon dark matter detector. Methods of neutron background suppression are investigated. A sensitivity of 10 −9 –10 −10 pb to WIMP-nucleon interactions can be achieved by a tonne-scale detector.
Astroparticle Physics | 2006
H.M. Araújo; D. Yu. Akimov; G. J. Alner; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; V. Chepel; H. Chagani; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; C. Ghag; R. Hollingworth; A.S. Howard; W.G. Jones; M. Joshi; J. Kirkpatrick; A. G. Kovalenko; V.A. Kudryavtsev; V. N. Lebedenko; T.B. Lawson; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky
We present results from a GEANT4-based Monte Carlo tool for end-to-end simulations of the ZEPLIN-III dark matter experiment. ZEPLIN-III is a two-phase detector which measures both the scintillation light and the ionisation charge generated in liquid xenon by interacting particles and radiation. The software models the instrument response to radioactive backgrounds and calibration sources, including the generation, ray-tracing and detection of the primary and secondary scintillations in liquid and gaseous xenon, and subsequent processing by data acquisition electronics. A flexible user interface allows easy modification of detector parameters at run time. Realistic datasets can be produced to help with data analysis, an example of which is the position reconstruction algorithm developed from simulated data. We present a range of simulation results confirming the original design sensitivity of a few times 10−8 pb to the WIMP-nucleon cross-section.
Physics Letters B | 2007
G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; R. Cashmore; H. Chagani; V. Chepel; D. Cline; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; J. Gao; C. Ghag; A.S. Howard; W.G. Jones; M. Joshi; E.V. Korolkova; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky
The first underground data run of the ZEPLIN-II experiment has set a limit on the nuclear recoil rate in the two-phase xenon detector for direct dark matter searches. In this Letter the results from this run are converted into the limits on spin-dependent WIMP-proton and WIMP-neutron cross-sections. The minimum of the curve for WIMP-neutron cross-section corresponds to 7 × 10−2 pb at a WIMP mass of around 65 GeV.
Astroparticle Physics | 2008
H.M. Araújo; J. Blockley; C. Bungau; M.J. Carson; H. Chagani; E. Daw; B. Edwards; C. Ghag; E.V. Korolkova; V.A. Kudryavtsev; P. K. Lightfoot; A. Lindote; I. Liubarsky; R. Lüscher; P. Majewski; K. Mavrokoridis; J.E. McMillan; A. St. J. Murphy; S. M. Paling; J. Pinto da Cunha; R. Preece; M. Robinson; N.J.T. Smith; P.F. Smith; N.J.C. Spooner; T. J. Sumner; R. Walker; H. Wang; J. T. White
We present the first measurements of the muon-induced neutron flux at the Boulby Underground Laboratory. The experiment was carried out with an 0.73 tonne liquid scintillator that also served as an anticoincidence system for the ZEPLIN-II direct dark matter search. The experimental method exploited the delayed coincidences between high-energy muon signals and gamma-rays from radiative neutron capture on hydrogen or other elements. The muon-induced neutron rate, defined as the average number of detected neutrons per detected muon, was measured as 0.079±0.003 (stat.) neutrons/muon using neutron-capture signals above 0.55 MeV in a time window of 40–190 μs after the muon trigger. Accurate Monte Carlo simulations of the neutron production, transport and detection in a precisely modeled laboratory and experimental setup using the GEANT4 toolkit gave a result 1.8 times higher than the measured value. The difference greatly exceeds all statistical and systematic uncertainties. As the vast majority of neutrons detected in the current setup were produced in lead we evaluated from our measurements the neutron yield in lead as (1.31±0.06)×10-3 neutrons/muon/(g/cm2) for a mean muon energy of about 260 GeV.
Astroparticle Physics | 2002
V.A. Kudryavtsev; N.J.C. Spooner; P. K. Lightfoot; J.W. Roberts; M.J Lehner; T. Gamble; M.J. Carson; T.B Lawson; R. Lüscher; J.E. McMillan; B. Morgan; S. M. Paling; M. Robinson; D. R. Tovey; N.J.T. Smith; P.F. Smith; G. J. Alner; S.P. Hart; J.D. Lewin; R. Preece; T. J. Sumner; W. G. Jones; J. J. Quenby; B. Ahmed; A. Bewick; D. Davidge; J. Dawson; A.S. Howard; I. Ivaniouchenkov; M. Joshi
Abstract The status of dark matter searches with inorganic scintillator detectors at Boulby mine is reviewed and the results of tests with a CsI(Tl) crystal are presented. The objectives of the latter experiment were to study anomalous fast events previously observed and to identify ways to remove this background. Clear indications were found that these events were due to surface contamination of crystals by alphas, probably from radon decay. A new array of unencapsulated NaI(Tl) crystals immersed either in liquid paraffin or pure nitrogen atmosphere is under construction at Boulby. Such an approach allows complete control of the surface of the crystals and the ability to remove any surface contamination. First data from the unencapsulated NaI(Tl) do not show the presence of anomalous fast events.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2008
G. J. Alner; H.M. Araújo; A. Bewick; C. Bungau; B. Camanzi; M.J. Carson; H. Chagani; V. Chepel; D. Cline; D. Davidge; J.C. Davies; E. Daw; J. Dawson; T. Durkin; B. Edwards; T. Gamble; J. Gao; C. Ghag; W.G. Jones; M. Joshi; E.V. Korolkova; V.A. Kudryavtsev; T.B. Lawson; V. N. Lebedenko; J.D. Lewin; P. K. Lightfoot; A. Lindote; I. Liubarsky; M.I. Lopes; R. Lüscher
ZEPLIN II is a two-phase (liquid/gas) xenon dark matter detector searching for WIMP-nucleon interactions. In this paper we describe the data acquisition system used to record the data from ZEPLIN II and the reduction procedures which parameterise the data for subsequent analysis.
Nuclear Instruments & Methods in Physics Research Section A-accelerators Spectrometers Detectors and Associated Equipment | 2005
M. Robinson; P. K. Lightfoot; M.J. Carson; V.A. Kudryavtsev; N.J.C. Spooner
In low background and low threshold particle astrophysics experiments using observation of Cherenkov or scintillation light it is common to use pairs or arrays of photomultipliers operated in coincidence. In such circumstances, for instance in dark matter and neutrino experiments, unexpected PMT noise events have been observed, probably arising from generation of light from one PMT being detected by one or many other PMTs. We describe here experimental investigation of such coincident noise events and development of new techniques to remove them using novel pulse shape discrimination procedures. When applied to data from a low background NaI detector with facing PMTs the new procedures are found to improve noise rejection by a factor of 20 over conventional techniques, with significantly reduced loss of signal events.
Proceedings of Identification of dark matter 2008 — PoS(idm2008) | 2009
H.M. Araújo; J. Blockley; C. Bungau; M.J. Carson; H. Chagani; E. Daw; B. Edwards; C. Ghag; Elena Korolkova; V.A. Kudryavtsev; P. K. Lightfoot; A. Lindote; I. Liubarsky; R. Lüscher; P. Majewski; K. Mavrokoridis; J.E. McMillan; A. St. J. Murphy; S. M. Paling; J. Pinto da Cunha; R. Preece; M. Robinson; N.J.T. Smith; P.F. Smith; N.J.C. Spooner; T. J. Sumner; R. Walker; H. Wang; J. T. White
The first measurements of the muon-induced neutron flux at the Boulby Underground Laboratory are presented. The experiment was carried out with an 0.73 tonne liquid scintillation detector that also served as an anticoincidence system for the ZEPLIN-II direct dark matter search. The experimental method exploited the delayed coincidences between high-energy muon signals and gamma-rays from radiative neutron capture on hydrogen or other elements. The muon-induced neutron rate, defined as the average number of detected neutr ons per detected muon, was measured as 0.079± 0.003 (stat.) neutrons/muon using neutron-capture signals above 0.55 MeV in a time window of 40-190 μs after the muon trigger. Accurate Monte Carlo simulations of the neutron production, transport and detection in a precisely modeled laboratory and experimental setup using the GEANT4 toolkit gave a result 1.8 times higher than the measured value. The difference greatly exceeds all statistical and systematic uncertainties. As the vast majority of neutrons detected in the current setup were produced in lead we evaluated from our measurements the neutron yield in lead as (1.31± 0.06)× 10 3 neutrons/muon/(g/cm 2 ) for a mean muon energy of about 260 GeV.