M. Knölker
National Center for Atmospheric Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. Knölker.
The Astrophysical Journal | 2010
S. K. Solanki; P. Barthol; S. Danilovic; A. Feller; A. Gandorfer; J. Hirzberger; T. L. Riethmüller; M. Schüssler; J. A. Bonet; V. Martínez Pillet; J. C. del Toro Iniesta; V. Domingo; J. Palacios; M. Knölker; N. Bello González; T. Berkefeld; M. Franz; W. Schmidt; Alan M. Title
The SUNRISE balloon-borne solar observatory consists of a 1 m aperture Gregory telescope, a UV filter imager, an imaging vector polarimeter, an image stabilization system, and further infrastructure. The first science flight of SUNRISE yielded high-quality data that revealed the structure, dynamics, and evolution of solar convection, oscillations, and magnetic fields at a resolution of around 100 km in the quiet Sun. After a brief description of instruments and data, the first qualitative results are presented. In contrast to earlier observations, we clearly see granulation at 214 nm. Images in Ca II H display narrow, short-lived dark intergranular lanes between the bright edges of granules. The very small-scale, mixed-polarity internetwork fields are found to be highly dynamic. A significant increase in detectable magnetic flux is found after phase-diversity-related reconstruction of polarization maps, indicating that the polarities are mixed right down to the spatial resolution limit and probably beyond.
The Astrophysical Journal | 1998
O. Steiner; U. Grossmann-Doerth; M. Knölker; M. Schüssler
Nonstationary convection in the solar photosphere and its interaction with photospheric magnetic structures (flux sheets in intergranular lanes) have been simulated using a numerical code for two-dimensional MHD with radiative energy transfer. Dynamical phenomena are identified in the simulations, which may contribute to chromospheric and coronal heating. Among these are the bending and horizontal displacement of a flux sheet by convective flows and the excitation and propagation of shock waves both within and outside the magnetic structure. Observational signatures of these phenomena are derived from calculated Stokes profiles of Zeeman-sensitive spectral lines. We suggest that the extended red wings of the observed Stokes V profiles are due to downward coacceleration of magnetized material in a turbulent boundary layer between the flux sheet and the strong external downflow. Upward-propagating shocks in magnetic structures should be detectable if a time resolution of about 10 s is achieved, together with a spatial resolution that allows one to isolate individual magnetic structures. Determination of the complicated internal dynamics of magnetic elements requires observations with a spatial resolution better than 100 km in the solar photosphere.
The Astrophysical Journal | 2010
A. Lagg; S. K. Solanki; T. L. Riethmüller; V. Martínez Pillet; M. Schüssler; J. Hirzberger; A. Feller; J. M. Borrero; W. Schmidt; J. C. del Toro Iniesta; J. A. Bonet; P. Barthol; T. Berkefeld; V. Domingo; A. Gandorfer; M. Knölker; Alan M. Title
Until today, the small size of magnetic elements in quiet-Sun areas has required the application of indirect methods, such as the line-ratio technique or multi-component inversions, to infer their physical properties. A consistent match to the observed Stokes profiles could only be obtained by introducing a magnetic filling factor that specifies the fraction of the observed pixel filled with magnetic field. Here, we investigate the properties of a small magnetic patch in the quiet Sun observed with the IMaX magnetograph on board the balloon-borne telescope SUNRISE with unprecedented spatial resolution and low instrumental stray light. We apply an inversion technique based on the numerical solution of the radiative transfer equation to retrieve the temperature stratification and the field strength in the magnetic patch. The observations can be well reproduced with a one-component, fully magnetized atmosphere with a field strength exceeding 1 kG and a significantly enhanced temperature in the mid to upper photosphere with respect to its surroundings, consistent with semi-empirical flux tube models for plage regions. We therefore conclude that, within the framework of a simple atmospheric model, the IMaX measurements resolve the observed quiet-Sun flux tube.
The Astrophysical Journal | 2010
Jose A. Bonet; I. Márquez; J. Sánchez Almeida; J. Palacios; V. Martínez Pillet; S. K. Solanki; J. C. del Toro Iniesta; V. Domingo; T. Berkefeld; W. Schmidt; A. Gandorfer; P. Barthol; M. Knölker
We characterize the observational properties of the convectively driven vortex flows recently discovered on the quiet Sun, using magnetograms, Dopplergrams, and images obtained with the 1 m balloon-borne SUNRISE telescope. By visual inspection of time series, we find some 3.1 ? 10?3 vortices Mm?2 minute?1, which is a factor of ~1.7 larger than previous estimates. The mean duration of the individual events turns out to be 7.9?minutes, with a standard deviation of 3.2?minutes. In addition, we find several events appearing at the same locations along the duration of the time series (31.6?minutes). Such recurrent vortices show up in the proper motion flow field map averaged over the time series. The typical vertical vorticities are 6 ? 10?3 s?1, which corresponds to a period of rotation of some 35?minutes. The vortices show a preferred counterclockwise sense of rotation, which we conjecture may have to do with the preferred vorticity impinged by the solar differential rotation.
The Astrophysical Journal | 2010
S. Danilovic; Benjamin Beeck; A. Pietarila; M. Schüssler; S. K. Solanki; V. Martínez Pillet; J. A. Bonet; J. C. del Toro Iniesta; V. Domingo; P. Barthol; T. Berkefeld; A. Gandorfer; M. Knölker; W. Schmidt; Alan M. Title
We present the first observations of the transverse component of a photospheric magnetic field acquired by the imaging magnetograph SUNRISE/IMaX. Using an automated detection method, we obtain statistical properties of 4536 features with significant linear polarization signal. We obtain a rate of occurrence of 7 × 10–4 s–1 arcsec–2, which is 1-2 orders of magnitude larger than the values reported by previous studies. We show that these features have no characteristic size or lifetime. They appear preferentially at granule boundaries with most of them being caught in downflow lanes at some point. Only a small percentage are entirely and constantly embedded in upflows (16%) or downflows (8%).
The Astrophysical Journal | 2010
O. Steiner; M. Franz; N. Bello González; Ch. Nutto; R. Rezaei; V. Martínez Pillet; J. A. Bonet Navarro; J. C. del Toro Iniesta; V. Domingo; S. K. Solanki; M. Knölker; W. Schmidt; P. Barthol; A. Gandorfer
We have investigated a time series of continuum intensity maps and corresponding Dopplergrams of granulation in a very quiet solar region at the disk center, recorded with the Imaging Magnetograph eXperiment (IMaX) on board the balloon-borne solar observatory SUNRISE. We find that granules frequently show substructure in the form of lanes composed of a leading bright rim and a trailing dark edge, which move together from the boundary of a granule into the granule itself. We find strikingly similar events in synthesized intensity maps from an ab initio numerical simulation of solar surface convection. From cross sections through the computational domain of the simulation, we conclude that these granular lanes are the visible signature of (horizontally oriented) vortex tubes. The characteristic optical appearance of vortex tubes at the solar surface is explained. We propose that the observed vortex tubes may represent only the large-scale end of a hierarchy of vortex tubes existing near the solar surface.
The Astrophysical Journal | 2010
T. L. Riethmüller; S. K. Solanki; V. Martínez Pillet; J. Hirzberger; A. Feller; J. A. Bonet; N. Bello González; M. Franz; M. Schüssler; P. Barthol; T. Berkefeld; J. C. del Toro Iniesta; V. Domingo; A. Gandorfer; M. Knölker; W. Schmidt
Bright points (BPs) are manifestations of small magnetic elements in the solar photosphere. Their brightness contrast not only gives insight into the thermal state of the photosphere (and chromosphere) in magnetic elements, but also plays an important role in modulating the solar total and spectral irradiance. Here, we report on simultaneous high-resolution imaging and spectropolarimetric observations of BPs using SUNRISE balloon-borne observatory data of the quiet Sun at the disk center. BP contrasts have been measured between 214 nm and 525 nm, including the first measurements at wavelengths below 388 nm. The histograms of the BP peak brightness show a clear trend toward broader contrast distributions and higher mean contrasts at shorter wavelengths. At 214 nm, we observe a peak brightness of up to five times the mean quiet-Sun value, the highest BP contrast so far observed. All BPs are associated with a magnetic signal, although in a number of cases it is surprisingly weak. Most of the BPs show only weak downflows, the mean value being 240 m s–1, but some display strong down- or upflows reaching a few km s–1.
The Astrophysical Journal | 2010
N. Bello González; M. Franz; V. Martínez Pillet; J. A. Bonet; S. K. Solanki; J. C. del Toro Iniesta; W. Schmidt; A. Gandorfer; V. Domingo; P. Barthol; T. Berkefeld; M. Knölker
We study the energy flux carried by acoustic waves excited by convective motions at sub-photospheric levels. The analysis of high-resolution spectropolarimetric data taken with IMaX/SUNRISE provides a total energy flux of ~6400-7700 W m–2 at a height of ~250 km in the 5.2-10 mHz range, i.e., at least twice the largest energy flux found in previous works. Our estimate lies within a factor of two of the energy flux needed to balance radiative losses from the chromosphere according to the estimates of Anderson & Athay and revives interest in acoustic waves for transporting energy to the chromosphere. The acoustic flux is mainly found in the intergranular lanes but also in small rapidly evolving granules and at the bright borders, forming dark dots and lanes of splitting granules.
Astrophysical Journal Supplement Series | 2017
S. K. Solanki; T. L. Riethmüller; P. Barthol; S. Danilovic; W. Deutsch; Hans-Peter Doerr; A. Feller; A. Gandorfer; D. Germerott; Laurent Gizon; B. Grauf; K. Heerlein; J. Hirzberger; M. Kolleck; A. Lagg; R. Meller; G. Tomasch; M. van Noort; J. Blanco Rodríguez; J. L. Gasent Blesa; M. Balaguer Jiménez; J. C. del Toro Iniesta; A. C. Lopez Jimenez; D. Orozco Suárez; T. Berkefeld; C. Halbgewachs; W. Schmidt; Alberto Alvarez-Herrero; L. Sabau-Graziati; I. Pérez Grande
The SUNRISE balloon-borne solar observatory, consisting of a 1~m aperture telescope that provided a stabilized image to a UV filter imager and an imaging vector polarimeter, carried out its second science flight in June 2013. It provided observations of parts of active regions at high spatial resolution, including the first high-resolution images in the Mg~{\sc ii}~k line. The obtained data are of very high quality, with the best UV images reaching the diffraction limit of the telescope at 3000~\AA\ after Multi-Frame Blind Deconvolution reconstruction accounting for phase-diversity information. Here a brief update is given of the instruments and the data reduction techniques, which includes an inversion of the polarimetric data. Mainly those aspects that evolved compared with the first flight are described. A tabular overview of the observations is given. In addition, an example time series of a part of the emerging active region NOAA AR~11768 observed relatively close to disk centre is described and discussed in some detail. The observations cover the pores in the trailing polarity of the active region, as well as the polarity inversion line where flux emergence was ongoing and a small flare-like brightening occurred in the course of the time series. The pores are found to contain magnetic field strengths ranging up to 2500~G and, while large pores are clearly darker and cooler than the quiet Sun in all layers of the photosphere, the temperature and brightness of small pores approach or even exceed those of the quiet Sun in the upper photosphere.
The Astrophysical Journal | 2010
J. Hirzberger; A. Feller; T. L. Riethmüller; M. Schüssler; Juan Manuel Borrero; N. Afram; Yvonne C. Unruh; S. V. Berdyugina; A. Gandorfer; S. K. Solanki; P. Barthol; J. A. Bonet; V. Martínez Pillet; T. Berkefeld; M. Knölker; W. Schmidt; Alan M. Title
We present high-resolution images of the Sun in the near-ultraviolet spectral range between 214 nm and 397 nm as obtained from the first science flight of the 1 m SUNRISE balloon-borne solar telescope. The quiet-Sun rms intensity contrasts found in this wavelength range are among the highest values ever obtained for quiet-Sun solar surface structures—up to 32.8% at a wavelength of 214 nm. We compare the rms contrasts obtained from the observational data with theoretical intensity contrasts obtained from numerical magnetohydrodynamic simulations. For 388 nm and 312 nm the observations agree well with the numerical simulations whereas at shorter wavelengths discrepancies between observed and simulated contrasts remain.