M. S. S. Gill
Stanford University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by M. S. S. Gill.
Monthly Notices of the Royal Astronomical Society | 2010
Sarah Bridle; Sreekumar T. Balan; Matthias Bethge; Marc Gentile; Stefan Harmeling; Catherine Heymans; Michael Hirsch; Reshad Hosseini; M. Jarvis; D. Kirk; Thomas D. Kitching; Konrad Kuijken; Antony Lewis; Stephane Paulin-Henriksson; Bernhard Schölkopf; Malin Velander; Lisa Voigt; Dugan Witherick; Adam Amara; G. M. Bernstein; F. Courbin; M. S. S. Gill; Alan Heavens; Rachel Mandelbaum; Richard Massey; Baback Moghaddam; A. Rassat; Alexandre Refregier; Jason Rhodes; Tim Schrabback
We present the results of the Gravitational LEnsing Accuracy Testing 2008 (GREAT08) Challenge, a blind analysis challenge to infer weak gravitational lensing shear distortions from images. The primary goal was to stimulate new ideas by presenting the problem to researchers outside the shear measurement community. Six GREAT08 Team methods were presented at the launch of the Challenge and five additional groups submitted results during the 6-month competition. Participants analyzed 30 million simulated galaxies with a range in signal-to-noise ratio, point spread function ellipticity, galaxy size and galaxy type. The large quantity of simulations allowed shear measurement methods to be assessed at a level of accuracy suitable for currently planned future cosmic shear observations for the first time. Different methods perform well in different parts of simulation parameter space and come close to the target level of accuracy in several of these. A number of fresh ideas have emerged as a result of the Challenge including a re-examination of the process of combining information from different galaxies, which reduces the dependence on realistic galaxy modelling. The image simulations will become increasingly sophisticated in future GREAT Challenges, meanwhile the GREAT08 simulations remain as a benchmark for additional developments in shear measurement algorithms.
Monthly Notices of the Royal Astronomical Society | 2012
Thomas D. Kitching; Sreekumar T. Balan; Sarah Bridle; N. Cantale; F. Courbin; T. F. Eifler; Marc Gentile; M. S. S. Gill; Stefan Harmeling; Catherine Heymans; Michael Hirsch; K. Honscheid; Tomasz Kacprzak; D. Kirkby; Daniel Margala; Richard Massey; P. Melchior; G. Nurbaeva; K. Patton; J. Rhodes; Barnaby Rowe; Andy Taylor; M. Tewes; Massimo Viola; Dugan Witherick; Lisa Voigt; J. Young; Joe Zuntz
We present the results from the first public blind point-spread function (PSF) reconstruction challenge, the GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Star Challenge. Reconstruction of a spatially varying PSF, sparsely sampled by stars, at non-star positions is a critical part in the image analysis for weak lensing where inaccuracies in the modeled ellipticity e and size R^2 can impact the ability to measure the shapes of galaxies. This is of importance because weak lensing is a particularly sensitive probe of dark energy and can be used to map the mass distribution of large scale structure. Participants in the challenge were presented with 27,500 stars over 1300 images subdivided into 26 sets, where in each set a category change was made in the type or spatial variation of the PSF. Thirty submissions were made by nine teams. The best methods reconstructed the PSF with an accuracy of σ(e) ≈ 2.5 × 10^(–4) and σ(R^2)/R^2 ≈ 7.4 × 10^(–4). For a fixed pixel scale, narrower PSFs were found to be more difficult to model than larger PSFs, and the PSF reconstruction was severely degraded with the inclusion of an atmospheric turbulence model (although this result is likely to be a strong function of the amplitude of the turbulence power spectrum).
The Annals of Applied Statistics | 2009
Sarah Bridle; John Shawe-Taylor; Adam Amara; Douglas E. Applegate; Sreekumar T. Balan; Joel Bergé; G. M. Bernstein; H. Dahle; Thomas Erben; M. S. S. Gill; Alan Heavens; Catherine Heymans; F. William High; Henk Hoekstra; M. Jarvis; D. Kirk; Thomas D. Kitching; Jean-Paul Kneib; Konrad Kuijken; David Lagatutta; Rachel Mandelbaum; Richard Massey; Y. Mellier; Baback Moghaddam; Yassir Moudden; Reiko Nakajima; Stephane Paulin-Henriksson; Sandrine Pires; A. Rassat; Alexandre Refregier
The GRavitational lEnsing Accuracy Testing 2008 (GREAT08) Challenge focuses on a problem that is of crucial importance for future observations in cosmology. The shapes of distant galaxies can be used to determine the properties of dark energy and the nature of gravity, because light from those galaxies is bent by gravity from the intervening dark matter. The observed galaxy images appear distorted, although only slightly, and their shapes must be precisely disentangled from the effects of pixelisation, convolution and noise. The worldwide gravitational lensing community has made significant progress in techniques to measure these distortions via the Shear TEsting Program (STEP). Via STEP, we have run challenges within our own community, and come to recognise that this particular image analysis problem is ideally matched to experts in statistical inference, inverse problems and computational learning. Thus, in order to continue the progress seen in recent years, we are seeking an infusion of new ideas from these communities. This document details the GREAT08 Challenge for potential participants. Please visit www.great08challenge.info for the latest information.
Astrophysical Journal Supplement Series | 2014
Rachel Mandelbaum; Barnaby Rowe; James Bosch; C. Chang; F. Courbin; M. S. S. Gill; M. Jarvis; Arun Kannawadi; Tomasz Kacprzak; Claire Lackner; Alexie Leauthaud; Hironao Miyatake; Reiko Nakajima; Jason Rhodes; Melanie Simet; Joe Zuntz; Bob Armstrong; Sarah Bridle; Jean Coupon; J. P. Dietrich; Marc Gentile; Catherine Heymans; Alden S. Jurling; Stephen M. Kent; D. Kirkby; Daniel Margala; Richard Massey; P. Melchior; J. R. Peterson; A. Roodman
The GRavitational lEnsing Accuracy Testing 3 (GREAT3) challenge is the third in a series of image analysis challenges, with a goal of testing and facilitating the development of methods for analyzing astronomical images that will be used to measure weak gravitational lensing. This measurement requires extremely precise estimation of very small galaxy shape distortions, in the presence of far larger intrinsic galaxy shapes and distortions due to the blurring kernel caused by the atmosphere, telescope optics, and instrumental effects. The GREAT3 challenge is posed to the astronomy, machine learning, and statistics communities, and includes tests of three specific effects that are of immediate relevance to upcoming weak lensing surveys, two of which have never been tested in a community challenge before. These effects include many novel aspects including realistically complex galaxy models based on high-resolution imaging from space; a spatially varying, physically motivated blurring kernel; and a combination of multiple different exposures. To facilitate entry by people new to the field, and for use as a diagnostic tool, the simulation software for the challenge is publicly available, though the exact parameters used for the challenge are blinded. Sample scripts to analyze the challenge data using existing methods will also be provided. See http://great3challenge.info and http://great3.projects.phys.ucl.ac.uk/leaderboard/ for more information.
Monthly Notices of the Royal Astronomical Society | 2010
Sarah Bridle; Sreekumar T. Balan; Matthias Bethge; Marc Gentile; Stefan Harmeling; Catherine Heymans; Michael Hirsch; Reshad Hosseini; M. Jarvis; D. Kirk; Thomas D. Kitching; Konrad Kuijken; Antony Lewis; Stephane Paulin-Henriksson; Bernhard Schölkopf; Malin Velander; Lisa Voigt; Dugan Witherick; Adam Amara; G. M. Bernstein; F. Courbin; M. S. S. Gill; Alan Heavens; Rachel Mandelbaum; Richard Massey; Baback Moghaddam; A. Rassat; Alexandre Refregier; Jason Rhodes; Tim Schrabback
We present the results of the Gravitational LEnsing Accuracy Testing 2008 (GREAT08) Challenge, a blind analysis challenge to infer weak gravitational lensing shear distortions from images. The primary goal was to stimulate new ideas by presenting the problem to researchers outside the shear measurement community. Six GREAT08 Team methods were presented at the launch of the Challenge and five additional groups submitted results during the 6-month competition. Participants analyzed 30 million simulated galaxies with a range in signal-to-noise ratio, point spread function ellipticity, galaxy size and galaxy type. The large quantity of simulations allowed shear measurement methods to be assessed at a level of accuracy suitable for currently planned future cosmic shear observations for the first time. Different methods perform well in different parts of simulation parameter space and come close to the target level of accuracy in several of these. A number of fresh ideas have emerged as a result of the Challenge including a re-examination of the process of combining information from different galaxies, which reduces the dependence on realistic galaxy modelling. The image simulations will become increasingly sophisticated in future GREAT Challenges, meanwhile the GREAT08 simulations remain as a benchmark for additional developments in shear measurement algorithms.
Astrophysical Journal Supplement Series | 2013
Thomas D. Kitching; Barnaby Rowe; M. S. S. Gill; Catherine Heymans; Richard Massey; Dugan Witherick; F. Courbin; K. Georgatzis; Marc Gentile; D. Gruen; M. Kilbinger; G. L. Li; A. P. Mariglis; G. Meylan; Amos J. Storkey; B. Xin
In this paper we present results from the weak lensing shape measurement GRavitational lEnsing Accuracy Testing 2010 (GREAT10) Galaxy Challenge. This marks an order of magnitude step change in the level of scrutiny employed in weak lensing shape measurement analysis. We provide descriptions of each method tested and include 10 evaluation metrics over 24 simulation branches. GREAT10 was the first shape measurement challenge to include variable fields; both the shear field and the Point Spread Function (PSF) vary across the images in a realistic manner. The variable fields enable a variety of metrics that are inaccessible to constant shear simulations including a direct measure of the impact of shape measurement inaccuracies, and the impact of PSF size and ellipticity, on the shear power spectrum. To assess the impact of shape measurement bias for cosmic shear we present a general pseudo-Cl formalism, that propagates spatially varying systematics in cosmic shear through to power spectrum estimates. We also show how one-point estimators of bias can be extracted from variable shear simulations. The GREAT10 Galaxy Challenge received 95 submissions and saw a factor of 3 improvement in the accuracy achieved by shape measurement methods. The best methods achieve sub-percent average biases. We find a strong dependence in accuracy as a function of signal-to-noise, and indications of a weak dependence on galaxy type and size. Some requirements for the most ambitious cosmic shear experiments are met above a signal-to-noise ratio of 20. These results have the caveat that the simulated PSF was a ground-based PSF. Our results are a snapshot of the accuracy of current shape measurement methods and are a benchmark upon which improvement can continue. This provides a foundation for a better understanding of the strengths and limitations of shape measurement methods.
The Astrophysical Journal | 2017
H. Lin; E. Buckley-Geer; A. Agnello; F. Ostrovski; Richard G. McMahon; B. Nord; N. Kuropatkin; Douglas L. Tucker; Tommaso Treu; James H. H. Chan; Sherry H. Suyu; H. T. Diehl; Thomas E. Collett; M. S. S. Gill; Anupreeta More; Adam Amara; Matthew W. Auger; F. Courbin; C. D. Fassnacht; Joshua A. Frieman; Phil Marshall; G. Meylan; Cristian E. Rusu; T. M. C. Abbott; F. B. Abdalla; S. Allam; M. Banerji; K. Bechtol; A. Benoit-Lévy; E. Bertin
We report the discovery and spectroscopic confirmation of the quad-like lensed quasar system DES J0408-5354 found in the Dark Energy Survey (DES) Year 1 (Y1) data. This system was discovered during a search for DES Y1 strong lensing systems using a method that identified candidates as red galaxies with multiple blue neighbors. DES J0408-5354 consists of a central red galaxy surrounded by three bright (i < 20) blue objects and a fourth red object. Subsequent spectroscopic observations using the Gemini South telescope confirmed that the three blue objects are indeed the lensed images of a quasar with redshift z = 2.375, and that the central red object is an early-type lensing galaxy with redshift z = 0.597. DES J0408-5354 is the first quad lensed quasar system to be found in DES and begins to demonstrate the potential of DES to discover and dramatically increase the sample size of these very rare objects.
Physical Review D | 1998
Stanley J. Brodsky; M. S. S. Gill; Michael Melles; Johan Rathsman
The conventional definition of the running coupling
Physical Review D | 1998
Stanley J. Brodsky; M. S. S. Gill; Michael Melles; Johan Rathsman
\alpha_{\bar{MS}}(\mu)
Monthly Notices of the Royal Astronomical Society | 2017
A. Agnello; H. Lin; L. Buckley-Geer; Tommaso Treu; V. Bonvin; F. Courbin; Cameron A. Lemon; Takahiro Morishita; Adam Amara; Matthew W. Auger; Simon Birrer; J. Chan; Thomas E. Collett; Anupreeta More; C. D. Fassnacht; Joshua A. Frieman; Phil Marshall; Richard G. McMahon; G. Meylan; Sherry H. Suyu; Francisco J. Castander; D. A. Finley; A. Howell; C. S. Kochanek; M. Makler; Paul Martini; N. Morgan; B. Nord; F. Ostrovski; Paul L. Schechter
in quantum chromodynamics is based on a solution to the renormalization group equations which treats quarks as either completely massless at a renormalization scale