Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Temerin is active.

Publication


Featured researches published by M. Temerin.


Space Science Reviews | 1980

Satellite measurements and theories of low altitude auroral particle acceleration

F. S. Mozer; Cynthia A. Cattell; M. K. Hudson; Robert L. Lysak; M. Temerin; R. B. Torbert

Several previous and new S3-3 satellite results on DC electric fields, field-aligned currents, and waves are described, interpreted theoretically, and applied to the understanding of auroral particle acceleration at altitudes below 8000 km. These results include the existence of two spatial scale sizes (less than 0.1 degree and a few degrees invariant latitude) in both the perpendicular and parallel electric fields; the predominance of S-shaped rather than V-shaped equipotential contours on both spatial saales; the correlated presence of field-aligned currents, low frequency wave turbulence, coherent ion cyclotron wave emissions and accelerated upmoving ions and downgoing electrons; intense waves inside electrostatic shocks and important wave-particle interactions therein; correlations of field-aligned currents with magnetospheric boundaries that are determined by convection electric field measurements; electron acceleration producing discrete auroral arcs in the smaller scale fields and producing inverted-V events in the larger scale fields; ion and electron acceleration due to both wave-particle interactions and the parallel electric fields. Further analyses of acceleration mechanisms and energetics are presented.


Geophysical Research Letters | 1998

FAST satellite observations of large‐amplitude solitary structures

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; I. Roth; L. Muschietti; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

We report observations of “fast solitary waves” that are ubiquitous in downward current regions of the mid-altitude auroral zone. The single-period structures have large amplitudes (up to 2.5 V/m), travel much faster than the ion acoustic speed, carry substantial potentials (up to ∼100 Volts), and are associated with strong modulations of energetic electron fluxes. The amplitude and speed of the structures distinguishes them from ion-acoustic solitary waves or weak double layers. The electromagnetic signature appears to be that of an positive charge (electron hole) traveling anti-earthward. We present evidence that the structures are in or near regions of magnetic-field-aligned electric fields and propose that these nonlinear structures play a key role in supporting parallel electric fields in the downward current region of the auroral zone.


Geophysical Research Letters | 1993

Simulation of the prompt energization and transport of radiation belt particles during the March 24, 1991 SSC

X. Li; I. Roth; M. Temerin; J. R. Wygant; M. K. Hudson; J. B. Blake

The authors model the rapid ([approximately]1 min) formation of a new electron radiation belt at L [approx equal] 2.5 that resulted from the Storm Sudden Commencement (SSC) of March 24, 1991 as observed by the CRRES satellite. Guided by the observed electric and magnetic fields, the authors represent the time-dependent magnetospheric electric field during the SSC by an asymmetric bipolar pulse that is associated with the compression and relaxation of the Earths magnetic field. The authors follow the electrons using a relativistic guiding center code. The test-particle simulations show that electrons with energies of a few MeV at L > 6 were energized up to 40 MeV and transported to L [approx equal] 2.5 during a fraction of their drift period. The energization process conserves the first adiabatic invariant and is enhanced due to resonance of the electron drift motion with the time-varying electric field. Their simulation results, with an initial W[sup [minus]8] energy flux spectra, reproduce the observed electron drift echoes and show that the interplanetary shock impacted the magnetosphere between 1500 and 1800 MLT. 121 refs., 5 figs.


Geophysical Research Letters | 1998

FAST observations in the downward auroral current region: Energetic upgoing electron beams, parallel potential drops, and ion heating

C. W. Carlson; J. P. McFadden; R. E. Ergun; M. Temerin; W. Peria; F. S. Mozer; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; R. C. Elphic; Robert J. Strangeway; C. A. Cattell; R. F. Pfaff

Observations of plasma particles and fields by the FAST satellite find evidence of acceleration of intense upgoing electron beams by quasi-static parallel electric fields. The beam characteristics include a broad energy spectrum with peak energies between 100 eV and 5 keV, perpendicular temperatures less than 1 eV, and fluxes greater than 109/cm²sec. Diverging electrostatic shocks associated with the beams have integrated potentials that match the beam energy. These beams are found in regions of downward Birkeland current and account for the total field-aligned current when they are present. The most energetic ion conics in the auroral zone are found coincident with these beams, in agreement with the model for “trapped” conics. The measured particle densities of the electron beams and associated ion conics are approximately equal and typically range from 1 to 10 cm−3, with no evidence for additional cold density. The beams are seen frequently at altitudes between 2000 and 4000 km in the winter auroral zone. Their probability of occurrence has a strong dependence on season and altitude and is similar to that for upgoing ion beams in the adjacent upward current regions. This similarity suggests that the density and scale height of ionospheric ions play an important role in the formation of both types of beams.


Geophysical Research Letters | 1998

FAST satellite observations of electric field structures in the auroral zone

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

Electric field and energetic particle observations by the Fast Auroral Snapshot (FAST) satellite provide convincing evidence of particle acceleration by quasi-static, magnetic-field-aligned (parallel) electric fields in both the upward and downward current regions of the auroral zone. We demonstrate this by comparing the inferred parallel potentials of electrostatic shocks with particle energies. We also report nonlinear electric field structures which may play a role in supporting parallel electric fields. These structures include large-amplitude ion cyclotron waves in the upward current region, and intense, spiky electric fields in the downward current region. The observed structures had substantial parallel components and correlative electron flux modulations. Observations of parallel electric fields in two distinct plasmas suggest that parallel electric fields may be a fundamental particle acceleration mechanism in astrophysical plasmas.


Journal of Geophysical Research | 2000

Polar Spacecraft Based Comparisons of Intense Electric Fields and Poynting Flux Near and Within the Plasma Sheet-Tail Lobe Boundary to UVI Images: An Energy Source for the Aurora

J. R. Wygant; A. Keiling; C. A. Cattell; M. T. Johnson; Robert L. Lysak; M. Temerin; F. S. Mozer; C. A. Kletzing; J. D. Scudder; W. K. Peterson; C. T. Russell; G. K. Parks; M. Brittnacher; J. F. Spann

In this paper, we present measurements from two passes of the Polar spacecraft of intense electric and magnetic field structures associated with Alfven waves at and within the outer boundary of the plasma sheet at geocentric distances of 4-6 R(sub E), near local midnight. The electric field variations have maximum values exceeding 100 mV/m and are typically polarized approximately normal to the plasma sheet boundary. The electric field structures investigated vary over timescales (in the spacecraft frame.) ranging front 1 to 30 s. They are associated with strong magnetic field fluctuations with amplitudes of 10-40 nT which lie predominantly ill the plane of the plasma sheet and are perpendicular to the local magnetic field. The Poynting flux associated with the perturbation fields measured at these altitudes is about 1-2 ergs per square centimeters per second and is directed along the average magnetic field direction toward the ionosphere. If the measured Poynting flux is mapped to ionospheric altitudes along converging magnetic field lines. the resulting energy flux ranges up to 100 ergs per centimeter squared per second. These strongly enhanced Poynting fluxes appear to occur in layers which are observed when the spacecraft is magnetically conjugate (to within a 1 degree mapping accuracy) to intense auroral structures as detected by the Polar UV Imager (UVI). The electron energy flux (averaged over a spatial resolution of 0.5 degrees) deposited in the ionosphere due to auroral electron beams as estimated from the intensity in the UVI Lyman-Birge-Hopfield-long filters is 15-30 ergs per centimeter squared per second. Thus there is evidence that these electric field structures provide sufficient Poynting flux to power the acceleration of auroral electrons (as well as the energization of upflowing ions and Joule heating of the ionosphere). During some events the phasing and ratio of the transverse electric and magnetic field variations are consistent with earthward propagation of Alfven surface waves with phase velocities of 4000-10000 kilometers per second. During other events the phase shifts between electric and magnetic fields suggest interference between upward and downward propagating Alfven waves. The E/B ratios are about an order of magnitude larger than typical values of C/SIGMA(sub p), where SIGMA(sub p), is the height integrated Pedersen conductivity. The contribution to the total energy flux at these altitudes from Poynting flux associated with Alfven waves is comparable to or larger than the contribution from the particle energy flux and 1-2 orders of magnitude larger than that estimated from the large-scale steady state convection electric field and field-aligned current system.


Geophysical Research Letters | 1998

Simulation of dispersionless injections and drift echoes of energetic electrons associated with substorms

X. Li; D. N. Baker; M. Temerin; G. D. Reeves; R. D. Belian

The term “dispersionless injection” refers to a class of events which show simultaneous enhancement (injection) of electrons and ions with different energies usually seen at or near geosynchronous orbit. We show that dispersionless injections can be understood as a consequence of changes in the electric and magnetic fields by modeling an electron injection event observed early on January 10, 1997 by means of a test-particle simulation. The model background magnetic field is a basic dipole field made asymmetrical by a compressed dayside and a weakened nightside. The transient fields are modeled with only one component of the electric field which is westward and a consistent magnetic field. These fields are used to model the major features of a dipolarization process during a substorm onset. We follow the electrons using a relativistic guiding center code. Our simulation results, with an initial kappa electron energy flux spectrum, reproduce the observed electron injection and subsequent drift echoes and show that the energization of injected electrons is mainly due to betatron acceleration of the preexisting electron population at larger radial distances in the magnetotail by transient fields.


Geophysical Research Letters | 2001

Quantitative prediction of radiation belt electrons at geostationary orbit based on solar wind measurements

X. Li; M. Temerin; D. N. Baker; G. D. Reeves; D. Larson

Solar wind measurements are used to predict the MeV electron radiation belt flux at the position of geostationary orbit. Using a model based on the standard radial diffusion equation, a prediction efficiency of 0.81 and a linear correlation of 0.90 were achieved for the years 1995–1996 for the logarithm of average daily flux. Model parameters based on the years 1995-1996 gave a prediction efficiency and a linear correlation for the years 1995–1999 of 0.59 and 0.80, respectively. The radial diffusion equation is solved after making the diffusion coefficient a function of the solar wind velocity and interplanetary magnetic field. The solar wind velocity is the most important parameter governing relativistic electron fluxes at geostationary orbit. The model also provides a physical explanation to several long standing mysteries of the variation of the MeV electrons.


Journal of Geophysical Research | 1998

Experimental evidence on the role of the large spatial scale electric field in creating the ring current

J. R. Wygant; D. Rowland; H. J. Singer; M. Temerin; F. S. Mozer; M. K. Hudson

This paper presents the first simultaneous in situ measurements of the large-scale convection electric field and the ring current induced magnetic field perturbations in the equatorial plane of the inner magnetosphere and compares them to the evolution of major geomagnetic storms as characterized by Dst. The measurements were obtained from the University of California, Berkeley double-probe electric field experiment and the Air Force Geophysics Laboratory fluxgate magnetometer on the CRRES spacecraft. This spacecraft had an apogee near geosynchronous orbit and a perigee near 300 km altitude. We focus on the major geomagnetic storm on March 24, 1991, for which the maximum negative excursion of Dst was about −300 nT. During the main phase of the storm, the large-scale electric field repeatedly penetrated earthward, maximizing between L = 2 and L = 4 with magnitudes of 6 mV/m. These magnitudes were larger than quiet time values of the electric field by a factor of 60 or more. Electric potential drops across the dusk region from L = 2 to L = 4 ranged up to 50–70 kV in concert with increases in Kp up to 9 and dDst/dt (an indicator of the net ring current injection rate) which ranged up to −50 nT/hr. These electric fields lasted for time periods of the order of an hour or more and were capable of injecting ring current ions from L = 8 to L = 2.4 and energizing particles from initial plasma sheet energies of 1–5 keV up to 300 keV through conservation of the first adiabatic invariant. The data obtained during the recovery phase of this storm provide the first direct experimental evidence in the equatorial plane that the electric field is systematically diminished or shielded earthward of the inner edge of the ring current during this phase of the geomagnetic storm. Also observed during the 2-week recovery phase were episodic enhancements in the electric field which coincided and were colocated with enhancements of in situ ring current intensity and which also coincided with decreases in Dst. These enhancements in the electric field and in the ring current magnetic field perturbation occurred at progressively larger radial positions as the recovery phase continued. Evidence for regions of reversed convection near midnight during the recovery phase is provided. An unexpected and important feature of this data set, during both main and recovery phases, near 1800–2100 MLT, is that electric fields are often much stronger earthward of L = 4 or L = 5 than at positions more distant than L = 6. This suggests important features of the interaction between the hot ring current plasma and the large-scale electric field in the inner magnetosphere are not yet understood.


Geophysical Research Letters | 1998

FAST satellite wave observations in the AKR source region

R. E. Ergun; C. W. Carlson; J. P. McFadden; F. S. Mozer; G. T. Delory; W. Peria; C. C. Chaston; M. Temerin; R. C. Elphic; Robert J. Strangeway; R. F. Pfaff; C. A. Cattell; D. M. Klumpar; E. G. Shelley; W. K. Peterson; E. Moebius; L. M. Kistler

The Fast Auroral SnapshoT (FAST) satellite has made observations in the Auroral Kilometric Radiation (AKR) source region with unprecedented frequency and time resolution. We confirm the AKR source is in a density depleted cavity and present examples in which cold electrons appeared to have been nearly evacuated (nhot> ncold). Electron distributions were depleted at low-energies and up-going ion beams were always present. Source region amplitudes were far greater than previously reported, reaching 2×10−4 (V/m)²/Hz (300 mV/m) in short bursts with bandwidths generally <1 kHz. Intense emissions were often at the edge of the density cavity. Emissions were near or below the cold plasma electron cyclotron frequency in the source region, and were almost entirely electromagnetic. The |E|/|B| ratio was constant as a function of frequency and rarely displayed any features that would identify a cold plasma cutoff or resonance.

Collaboration


Dive into the M. Temerin's collaboration.

Top Co-Authors

Avatar

F. S. Mozer

University of California

View shared research outputs
Top Co-Authors

Avatar

X. Li

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

C. W. Carlson

University of California

View shared research outputs
Top Co-Authors

Avatar

R. E. Ergun

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

J. P. McFadden

University of California

View shared research outputs
Top Co-Authors

Avatar

J. R. Wygant

University of Minnesota

View shared research outputs
Top Co-Authors

Avatar

I. Roth

University of California

View shared research outputs
Top Co-Authors

Avatar

D. N. Baker

University of Colorado Boulder

View shared research outputs
Top Co-Authors

Avatar

W. K. Peterson

University of Colorado Boulder

View shared research outputs
Researchain Logo
Decentralizing Knowledge