Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where M. Tristram is active.

Publication


Featured researches published by M. Tristram.


Astronomy and Astrophysics | 2010

Planck pre-launch status: The HFI instrument, from specification to actual performance

J.-M. Lamarre; Jean-Loup Puget; Peter A. R. Ade; F. R. Bouchet; G. Guyot; A. E. Lange; F. Pajot; A. Arondel; K. Benabed; J.-L. Beney; A. Benoit; J.-Ph. Bernard; R. S. Bhatia; Y. Blanc; J. J. Bock; E. Bréelle; T. Bradshaw; P. Camus; A. Catalano; J. Charra; M. Charra; S. Church; F. Couchot; A. Coulais; B. P. Crill; M. Crook; K. Dassas; P. de Bernardis; J. Delabrouille; P. de Marcillac

Context. The High Frequency Instrument (HFI) is one of the two focal instruments of the Planck mission. It will observe the whole sky in six bands in the 100 GHz-1 THz range. Aims: The HFI instrument is designed to measure the cosmic microwave background (CMB) with a sensitivity limited only by fundamental sources: the photon noise of the CMB itself and the residuals left after the removal of foregrounds. The two high frequency bands will provide full maps of the submillimetre sky, featuring mainly extended and point source foregrounds. Systematic effects must be kept at negligible levels or accurately monitored so that the signal can be corrected. This paper describes the HFI design and its characteristics deduced from ground tests and calibration. Methods: The HFI instrumental concept and architecture are feasible only by pushing new techniques to their extreme capabilities, mainly: (i) bolometers working at 100 mK and absorbing the radiation in grids; (ii) a dilution cooler providing 100 mK in microgravity conditions; (iii) a new type of AC biased readout electronics and (iv) optical channels using devices inspired from radio and infrared techniques. Results: The Planck-HFI instrument performance exceeds requirements for sensitivity and control of systematic effects. During ground-based calibration and tests, it was measured at instrument and system levels to be close to or better than the goal specification.


Astronomy and Astrophysics | 2010

Planck pre-launch status: High Frequency Instrument polarization calibration

C. Rosset; M. Tristram; N. Ponthieu; Peter A. R. Ade; J. Aumont; A. Catalano; L. Conversi; F. Couchot; B. P. Crill; F.-X. Desert; K. Ganga; M. Giard; Y. Giraud-Héraud; J. Haissinski; S. Henrot-Versillé; W. A. Holmes; W. C. Jones; J.-M. Lamarre; A. E. Lange; C. Leroy; J. F. Macías-Pérez; Bruno Maffei; P. de Marcillac; M.-A. Miville-Deschênes; L. Montier; F. Noviello; F. Pajot; O. Perdereau; F. Piacentini; M. Piat

The High Frequency Instrument of Planck will map the entire sky in the millimeter and sub-millimeter domain from 100 to 857 GHz with unprecedented sensitivity to polarization (ΔP/Tcmb ∼ 4 × 10 −6 for P either Q or U and Tcmb � 2.7 K) at 100, 143, 217 and 353 GHz. It will lead to major improvements in our understanding of the cosmic microwave background anisotropies and polarized foreground signals. Planck will make high resolution measurements of the E-mode spectrum (up to � ∼ 1500) and will also play a prominent role in the search for the faint imprint of primordial gravitational waves on the CMB polarization. This paper addresses the effects of calibration of both temperature (gain) and polarization (polarization efficiency and detector orientation) on polarization measurements. The specific requirements on the polarization parameters of the instrument are set and we report on their pre-flight measurement on HFI bolometers. We present a semi-analytical method that exactly accounts for the scanning strategy of the instrument as well as the combination of different detectors. We use this method to propagate errors through to the CMB angular power spectra in the particular case of Planck-HFI, and to derive constraints on polarization parameters. We show that in order to limit the systematic error to 10% of the cosmic variance of the E-mode power spectrum, uncertainties in gain, polarization efficiency and detector orientation must be below 0.15%, 0.3% and 1 ◦ respectively. Pre-launch ground measurements reported in this paper already fulfill these requirements.


Astronomy and Astrophysics | 2010

Planck pre-launch status: The optical system

J. A. Tauber; H. U. Nørgaard-Nielsen; Peter A. R. Ade; J. Amiri Parian; T. Banos; M. Bersanelli; C. Burigana; A. Chamballu; D. de Chambure; P. R. Christensen; O. Corre; A. Cozzani; B. P. Crill; G. Crone; O. D'Arcangelo; R. Daddato; D. Doyle; D. Dubruel; G. Forma; Richard E. Hills; K. M. Huffenberger; A. H. Jaffe; Niels Christian Jessen; P. Kletzkine; Jean-Michel Lamarre; J. P. Leahy; Y. Longval; P. de Maagt; Bruno Maffei; N. Mandolesi

Planck is a scientific satellite that represents the next milestone in space-based research related to the cosmic microwave background, and in many other astrophysical fields. Planck was launched on 14 May of 2009 and is now operational. The uncertainty in the optical response of its detectors is a key factor allowing Planck to achieve its scientific objectives. More than a decade of analysis and measurements have gone into achieving the required performances. In this paper, we describe the main aspects of the Planck optics that are relevant to science, and the estimated in-flight performance, based on the knowledge available at the time of launch. We also briefly describe the impact of the major systematic effects of optical origin, and the concept of in-flight optical calibration. Detailed discussions of related areas are provided in accompanying papers.


Archive | 2013

Planck intermediate results VII. Statistical properties of infrared and radio extragalactic sources from the Planck Early Release Compact Source Catalogue at frequencies

S. Colafrancesco; S. Colombi; L. P. L. Colombo; F. Cuttaia; G. de Gasperis; J. Delabrouille; C. Dickinson; H. Dole; S. Donzelli; M. Douspis; G. Efstathiou; F. Finelli; O. Forni; M. Frailis; E. Franceschi; S. Galeotta; Y. Giraud-Héraud; J. González-Nuevo; A. Gregorio; A. Gruppuso; S. Henrot-Versillé; C. Hernández-Monteagudo; D. Herranz; E. Hivon; M. Hobson; T. Jagemann; T. S. Kisner; R. Kneissl; J. Knoche; L. Knox

Collaboration


Dive into the M. Tristram's collaboration.

Top Co-Authors

Avatar

B. P. Crill

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

A. Catalano

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

J.-M. Lamarre

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

F. Couchot

University of Paris-Sud

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

A. E. Lange

California Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Bruno Maffei

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

A. Benoit

Centre national de la recherche scientifique

View shared research outputs
Top Co-Authors

Avatar

A. Coulais

Centre national de la recherche scientifique

View shared research outputs
Researchain Logo
Decentralizing Knowledge