Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maarten van de Guchte is active.

Publication


Featured researches published by Maarten van de Guchte.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Stress responses in lactic acid bacteria

Maarten van de Guchte; Pascale Serror; Christian Chervaux; Tamara Smokvina; S D Ehrlich; Emmanuelle Maguin

Lactic acid bacteria (LAB) constitute a heterogeneous group of bacteria that are traditionally used to produce fermented foods. The industrialization of food bio-transformations increased the economical importance of LAB, as they play a crucial role in the development of the organoleptique and hygienic quality of fermented products. Therefore, the reliability of starter strains in terms of quality and functional properties (important for the development of aroma and texture), but also in terms of growth performance and robustness has become essential. These strains should resist to adverse conditions encountered in industrial processes, for example during starter handling and storage (freeze-drying, freezing or spray-drying). The development of new applications such as life vaccines and probiotic foods reinforces the need for robust LAB since they may have to survive in the digestive tract, resist the intestinal flora, maybe colonize the digestive or uro-genital mucosa and express specific functions under conditions that are unfavorable to growth (for example, during stationary phase or storage). Also in nature, the ability to quickly respond to stress is essential for survival and it is now well established that LAB, like other bacteria, evolved defense mechanisms against stress that allow them to withstand harsh conditions and sudden environmental changes. While genes implicated in stress responses are numerous, in LAB the levels of characterization of their actual role and regulation differ widely between species. The functional conservation of several stress proteins (for example, HS proteins, Csp, etc) and of some of their regulators (for example, HrcA, CtsR) renders even more striking the differences that exist between LAB and the classical model micro-organisms. Among the differences observed between LAB species and B. subtilis, one of the most striking is the absence of a σB orthologue in L. lactis ssp. lactisas well as in at least two streptococci and probably E. faecalis. The overview of LAB stress responses also reveals common aspects of stress responses. As in other bacteria, adaptive responses appear to be a usual mode of stress protection in LAB. However, the cross-protection to other stress often induced by the expression of a given adaptive response, appears to vary between species. This observation suggests that the molecular bases of adaptive responses are, at least in part, species (or even subspecies) specific. A better understanding of the mechanisms of stress resistance should allow to understand the bases of the adaptive responses and cross protection, and to rationalize their exploitation to prepare LAB to industrial processes. Moreover, the identification of crucial stress related genes will reveal targets i) for specific manipulation (to promote or limit growth) , ii) to develop tools to screen for tolerant or sensitive strains and iii) to evaluate the fitness and level of adaptation of a culture. In this context, future genome and transcriptome analyses will undoubtedly complement the proteome and genetic information available today, and shed a new light on the perception of, and the response to, stress by lactic acid bacteria.


Antonie Van Leeuwenhoek International Journal of General and Molecular Microbiology | 2002

Discovering lactic acid bacteria by genomics

Todd R. Klaenhammer; Eric Altermann; Fabrizio Arigoni; Alexander Bolotin; Fred Breidt; Jeffrey Broadbent; Raul J. Cano; Stephane Chaillou; Josef Deutscher; M. J. Gasson; Maarten van de Guchte; Jean Guzzo; Axel Hartke; Trevor Hawkins; Pascal Hols; Robert W. Hutkins; Michiel Kleerebezem; Jan Kok; Oscar P. Kuipers; Mark Lubbers; Emmanuelle Maguin; Larry L. McKay; David A. Mills; Arjen Nauta; Ross Overbeek; Herman Pel; David Pridmore; Milton H. Saier; Douwe van Sinderen; Alexei Sorokin

This review summarizes a collection of lactic acid bacteria that are now undergoing genomic sequencing and analysis. Summaries are presented on twenty different species, with each overview discussing the organisms fundamental and practical significance, nvironmental habitat, and its role in fermentation, bioprocessing, or probiotics. For those projects where genome sequence data were available by March 2002, summaries include a listing of key statistics and interesting genomic features. These efforts will revolutionize our molecular view of Gram–positive bacteria, as up to 15 genomes from the low GC content lactic acid bacteria are expected to be available in the public domain by the end of 2003. Our collective view of the lactic acid bacteria will be fundamentally changed as we rediscover the relationships and capabilities of these organisms through genomics.


Applied and Environmental Microbiology | 2006

Production of a Heterologous Nonheme Catalase by Lactobacillus casei: an Efficient Tool for Removal of H2O2 and Protection of Lactobacillus bulgaricus from Oxidative Stress in Milk

Tatiana Rochat; Jean-Jacques Gratadoux; Alexandra Gruss; Gérard Corthier; Emmanuelle Maguin; Philippe Langella; Maarten van de Guchte

ABSTRACT Lactic acid bacteria (LAB) are generally sensitive to H2O2, a compound that they can paradoxically produce themselves, as is the case for Lactobacillus bulgaricus. Lactobacillus plantarum ATCC 14431 is one of the very few LAB strains able to degrade H2O2 through the action of a nonheme, manganese-dependent catalase (hereafter called MnKat). The MnKat gene was expressed in three catalase-deficient LAB species: L. bulgaricus ATCC 11842, Lactobacillus casei BL23, and Lactococcus lactis MG1363. While the protein could be detected in all heterologous hosts, enzyme activity was observed only in L. casei. This is probably due to the differences in the Mn contents of the cells, which are reportedly similar in L. plantarum and L. casei but at least 10- and 100-fold lower in Lactococcus lactis and L. bulgaricus, respectively. The expression of the MnKat gene in L. casei conferred enhanced oxidative stress resistance, as measured by an increase in the survival rate after exposure to H2O2, and improved long-term survival in aerated cultures. In mixtures of L. casei producing MnKat and L. bulgaricus, L. casei can eliminate H2O2 from the culture medium, thereby protecting both L. casei and L. bulgaricus from its deleterious effects.


Proteomics | 2009

Prediction of surface exposed proteins in Streptococcus pyogenes, with a potential application to other Gram-positive bacteria

Aleksandr Barinov; Valentin Loux; Amal Hammani; Pierre Nicolas; Philippe Langella; Dusko S. Ehrlich; Emmanuelle Maguin; Maarten van de Guchte

The in silico prediction of bacterial surface exposed proteins is of growing interest for the rational development of vaccines and in the study of bacteria–host relationships, whether pathogenic or host beneficial. This interest is driven by the increase in the use of DNA sequencing as a major tool in the early characterization of pathogenic bacteria and, more recently, even of complex ecosystems at the host–environment interface in metagenomics approaches. Current protein localization protocols are not suited to this prediction task as they ignore the potential surface exposition of many membrane‐associated proteins. Therefore, we developed a new flow scheme, SurfG+, for the processing of protein sequence data with the particular aim of identification of potentially surface exposed (PSE) proteins from Gram‐positive bacteria, which was validated for Streptococcus pyogenes. The results of an exploratory case study on closely related lactobacilli of the acidophilus group suggest that the yogurt bacterium Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) dedicates a relatively important fraction of its coding capacity to secreted proteins, while the probiotic gastrointestinal (GI) tract bacteria L. johnsonii and L. gasseri appear to encode a larger variety of PSE proteins, that may play a role in the interaction with the host.


Proteomics | 2008

Rerouting of pyruvate metabolism during acid adaptation in Lactobacillus bulgaricus

Annabelle Fernandez; Jun Ogawa; S. Penaud; Samira Boudebbouze; Dusko S. Ehrlich; Maarten van de Guchte; Emmanuelle Maguin

Lactic acid bacteria (LAB) gradually acidify their environment through the conversion of pyruvate to lactate, an essential process to regenerate NAD+ used during glycolysis. A clear demonstration of acidification can be found in yogurt, the product of milk fermentation by the LAB Lactobacillus delbrueckii ssp. bulgaricus (L. bulgaricus) and Streptococcus thermophilus, where the pH falls to 4.2. Acid adaptation therefore plays an important role in the physiology of LAB. Here we present the results of a proteomic approach to reveal cellular changes associated with acid adaptation in L. bulgaricus. These results were complemented with transcription data for selected genes to show three major effects: (i) induction of the chaperones GroES, GroEL, HrcA, GrpE, DnaK, DnaJ, ClpE, ClpP, and ClpL, and the repression of ClpC; (ii) induction of genes involved in the biosynthesis of fatty acids (fabH, accC, fabI); (iii) repression of genes involved in the mevalonate pathway of isoprenoid synthesis (mvaC, mvaS). Together with changes in the expression of other genes from the local metabolic network, these results for the first time show a coherent picture of changes in gene expression expected to result in a rerouting of pyruvate metabolism to favor fatty acid biosynthesis, and thereby affect membrane fluidity.


PLOS ONE | 2011

Molecular Basis of Virulence in Staphylococcus aureus Mastitis

Caroline Le Maréchal; Núbia Seyffert; Julien Jardin; David Hernandez; Gwénaël Jan; Lucie Rault; Vasco Azevedo; Patrice Francois; Jacques Schrenzel; Maarten van de Guchte; Sergine Even; Nadia Berkova; Richard Thiéry; J. Ross Fitzgerald; Eric Vautor; Yves Le Loir

Background S. aureus is one of the main pathogens involved in ruminant mastitis worldwide. The severity of staphylococcal infection is highly variable, ranging from subclinical to gangrenous mastitis. This work represents an in-depth characterization of S. aureus mastitis isolates to identify bacterial factors involved in severity of mastitis infection. Methodology/Principal Findings We employed genomic, transcriptomic and proteomic approaches to comprehensively compare two clonally related S. aureus strains that reproducibly induce severe (strain O11) and milder (strain O46) mastitis in ewes. Variation in the content of mobile genetic elements, iron acquisition and metabolism, transcriptional regulation and exoprotein production was observed. In particular, O11 produced relatively high levels of exoproteins, including toxins and proteases known to be important in virulence. A characteristic we observed in other S. aureus strains isolated from clinical mastitis cases. Conclusions/Significance Our data are consistent with a dose-dependant role of some staphylococcal factors in the hypervirulence of strains isolated from severe mastitis. Mobile genetic elements, transcriptional regulators, exoproteins and iron acquisition pathways constitute good targets for further research to define the underlying mechanisms of mastitis severity.


Inflammatory Bowel Diseases | 2012

Anti‐inflammatory properties of dairy lactobacilli

Clarissa Santos Rocha; Omar Lakhdari; Hervé M. Blottière; Sébastien Blugeon; Harry Sokol; Luis G. Bermúdez-Humarán; Vasco Azevedo; Anderson Miyoshi; Joël Doré; Philippe Langella; Emmanuelle Maguin; Maarten van de Guchte

Background: The intestinal microbiota plays an important role in human health through the modulation of innate immune responses. While selected commensal bacteria are marketed in specific probiotic products to control these responses, relatively little is known about the immune modulation potential of dairy bacteria that have principally been selected for their fermentation properties. The modulation of innate immune responses may reduce chronic inflammation in inflammatory bowel diseases like ulcerative colitis. Methods: A collection of dairy Lactobacillus delbrueckii strains was screened for immune modulation effects in vitro through the quantification of nuclear factor kappa B (NF‐&kgr;B) activation in a human intestinal epithelial cell line. Selected bacterial strains were then tested in vivo in a mouse dextran sodium sulfate (DSS) colitis model. Results: All L. delbrueckii strains tested showed anti‐inflammatory effects in vitro, to an extent that varied between strains. These effects rely on bacterial surface exposed proteins and affect the central part of the NF‐&kgr;B activation pathway. One of the selected strains significantly reduced the macroscopic and microscopic symptoms of DSS‐induced colitis in the mouse intestinal tract, diminished body weight loss, and improved survival. Conclusions: The results of this study show that dairy lactobacilli that often are part of a regular diet can modulate innate immune responses, and may thus affect health more than generally thought. One of the strains tested alleviated the symptoms of DSS‐induced colitis in mice, a model of human ulcerative colitis. (Inflamm Bowel Dis 2011;)


International Scholarly Research Notices | 2011

Importance of IL-10 Modulation by Probiotic Microorganisms in Gastrointestinal Inflammatory Diseases

Alejandra de Moreno de LeBlanc; Silvina del Carmen; Meritxell Zurita-Turk; Clarissa Santos Rocha; Maarten van de Guchte; Vasco Azevedo; Anderson Miyoshi; Jean Guy LeBlanc

Lactic acid bacteria (LAB) represent a heterogeneous group of microorganisms that are naturally present in many foods and possess a wide range of therapeutic properties. The aim of this paper is to present an overview of the current expanding knowledge of one of the mechanisms by which LAB and other probiotic microorganisms participate in the prevention and treatment of gastrointestinal inflammatory disease through their immune-modulating properties. A special emphasis will be placed on the critical role of the anti-inflammatory cytokine IL-10, and a brief overview of the uses of genetically engineered LAB that produce this important immune response mediator will also be discussed. Thus, this paper will demonstrate the critical role that IL-10 plays in gastrointestinal inflammatory diseases and how probiotics could be used in their treatment.


Gene | 1994

Identification of the putative repressor-encoding gene cI of the temperate lactococcal bacteriophage Tuc2009

Maarten van de Guchte; Charles Daly; Gerald F. Fitzgerald; Elke K. Arendt

The putative repressor-encoding gene cI of the temperate lactococcal bacteriophage Tuc2009 was cloned and sequenced. In the inferred amino-acid sequence, two domains can be recognized, one of which shows homology to DNA-binding domains of various regulatory proteins, while the other is thought to be involved in oligomerisation.


BMC Evolutionary Biology | 2007

Extensive horizontal transfer of core genome genes between two Lactobacillus species found in the gastrointestinal tract.

Pierre Nicolas; Philippe Bessières; S. Dusko Ehrlich; Emmanuelle Maguin; Maarten van de Guchte

BackgroundWhile genes that are conserved between related bacterial species are usually thought to have evolved along with the species, phylogenetic trees reconstructed for individual genes may contradict this picture and indicate horizontal gene transfer. Individual trees are often not resolved with high confidence, however, and in that case alternative trees are generally not considered as contradicting the species tree, although not confirming it either. Here we conduct an in-depth analysis of 401 protein phylogenetic trees inferred with varying levels of confidence for three lactobacilli from the acidophilus complex. At present the relationship between these bacteria, isolated from environments as diverse as the gastrointestinal tract (Lactobacillus acidophilus and Lactobacillus johnsonii) and yogurt (Lactobacillus delbrueckii ssp. bulgaricus), is ambiguous due to contradictory phenotypical and 16S rRNA based classifications.ResultsAmong the 401 phylogenetic trees, those that could be reconstructed with high confidence support the 16S-rRNA tree or one alternative topology in an astonishing 3:2 ratio, while the third possible topology is practically absent. Lowering the confidence threshold for trees to be taken into consideration does not significantly affect this ratio, and therefore suggests that gene transfer may have affected as much as 40% of the core genome genes. Gene function bias suggests that the 16S rRNA phylogeny of the acidophilus complex, which indicates that L. acidophilus and L. delbrueckii ssp. bulgaricus are the closest related of these three species, is correct. A novel approach of comparison of interspecies protein divergence data employed in this study allowed to determine that gene transfer most likely took place between the lineages of the two species found in the gastrointestinal tract.ConclusionThis case-study reports an unprecedented level of phylogenetic incongruence, presumably resulting from extensive horizontal gene transfer. The data give a first indication of the large extent of gene transfer that may take place in the gastrointestinal tract and its accumulated effect. For future studies, our results should encourage a careful weighing of data on phylogenetic tree topology, confidence and distribution to conclude on the absence or presence and extent of horizontal gene transfer.

Collaboration


Dive into the Maarten van de Guchte's collaboration.

Top Co-Authors

Avatar

Emmanuelle Maguin

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Valentin Loux

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Philippe Langella

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Samira Boudebbouze

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Rozenn Dervyn

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

S. Dusko Ehrlich

Institut national de la recherche agronomique

View shared research outputs
Top Co-Authors

Avatar

Vasco Azevedo

Universidade Federal de Minas Gerais

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gwénaël Jan

Institut national de la recherche agronomique

View shared research outputs
Researchain Logo
Decentralizing Knowledge