Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Madhu Dyavaiah is active.

Publication


Featured researches published by Madhu Dyavaiah.


PLOS Genetics | 2010

A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress

Clement T. Y. Chan; Madhu Dyavaiah; Michael S. DeMott; Koli Taghizadeh; Peter C. Dedon; Thomas J. Begley

Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m5C, and m2 2G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m5C, and m2 2G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.


Nature Communications | 2012

Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins

Clement T. Y. Chan; Yan Ling Joy Pang; Wenjun Deng; I. Ramesh Babu; Madhu Dyavaiah; Thomas J. Begley; Peter C. Dedon

Selective translation of survival proteins is an important facet of the cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA. Here we report the discovery of a step-wise translational control mechanism responsible for survival following oxidative stress. In yeast exposed to hydrogen peroxide, there is a Trm4 methyltransferase-dependent increase in the proportion of tRNALEU(CAA) containing m5C at the wobble position, which causes selective translation of mRNA from genes enriched in the TTG codon. Of these genes, oxidative stress increases protein expression from the TTG-enriched ribosomal protein gene RPL22A, but not its unenriched paralog. Loss of either TRM4 or RPL22A confers hypersensitivity to oxidative stress. Proteomic analysis reveals that oxidative stress causes a significant translational bias toward proteins coded by TTG-enriched genes. These results point to stress-induced reprogramming of tRNA modifications and consequential reprogramming of ribosomes in translational control of cell survival.


RNA Biology | 2012

Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications

Ashish Patil; Clement T. Y. Chan; Madhu Dyavaiah; John P. Rooney; Peter C. Dedon; Thomas J. Begley

Correct codon-anticodon pairing promotes translational fidelity, with these interactions greatly facilitated by modified nucleosides found in tRNA. We hypothesized that wobble uridine modifications catalyzed by tRNA methyltransferase 9 (Trm9) are essential for translational fidelity. In support, we have used phenotypic, reporter and protein-based assays to demonstrate increased translational infidelity in trm9Δ Saccharomyces cerevisiae cells. Codon reengineering studies suggest that Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific genes, those rich in arginine and glutamic acid codons from mixed boxes. Using quantitative tRNA modification analysis, we determined that trm9Δ cells are only deficient in 2 of 23 tRNA modifications, with those 2, 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), classified as key determinants of translational fidelity. We also show that in the absence of mcm5U and mcm5s2U, the resulting translational infidelity promotes protein errors and activation of unfolded protein and heat shock responses. These data support a model in which Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific transcripts, with decreased wobble base modification leading to translational infidelity, protein errors and activation of protein stress response pathways.


Cell Cycle | 2012

Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response

Ashish Patil; Madhu Dyavaiah; Fraulin Joseph; John P. Rooney; Clement T. Y. Chan; Peter C. Dedon; Thomas J. Begley

S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm⁵U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G₁ and G₂, and that mcm⁵U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm⁵U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.


Molecular Cancer Research | 2011

Autophagy-Dependent Regulation of the DNA Damage Response Protein Ribonucleotide Reductase 1

Madhu Dyavaiah; John P. Rooney; Sridar V. Chittur; Qishan Lin; Thomas J. Begley

Protein synthesis and degradation are posttranscriptional pathways used by cells to regulate protein levels. We have developed a systems biology approach to identify targets of posttranscriptional regulation and we have employed this system in Saccharomyces cerevisiae to study the DNA damage response. We present evidence that 50% to 75% of the transcripts induced by alkylation damage are regulated posttranscriptionally. Significantly, we demonstrate that two transcriptionally-induced DNA damage response genes, RNR1 and RNR4, fail to show soluble protein level increases after DNA damage. To determine one of the associated mechanisms of posttranscriptional regulation, we tracked ribonucleotide reductase 1 (Rnr1) protein levels during the DNA damage response. We show that RNR1 is actively translated after damage and that a large fraction of the corresponding Rnr1 protein is packaged into a membrane-bound structure and transported to the vacuole for degradation, with these last two steps dependent on autophagy proteins. We found that inhibition of target of rapamycin (TOR) signaling and subsequent induction of autophagy promoted an increase in targeting of Rnr1 to the vacuole and a decrease in soluble Rnr1 protein levels. In addition, we demonstrate that defects in autophagy result in an increase in soluble Rnr1 protein levels and a DNA damage phenotype. Our results highlight roles for autophagy and TOR signaling in regulating a specific protein and demonstrate the importance of these pathways in optimizing the DNA damage response. Mol Cancer Res; 9(4); 462–75. ©2011 AACR.


Molecular Cancer Research | 2012

Alkylation Sensitivity Screens Reveal a Conserved Cross-species Functionome

David Svilar; Madhu Dyavaiah; Ashley R. Brown; Jiang-bo Tang; Jianfeng Li; Peter R. McDonald; Tong Ying Shun; Andrea Braganza; Xiao-hong Wang; Salony Maniar; Claudette M. St. Croix; John S. Lazo; Ian F. Pollack; Thomas J. Begley; Robert W. Sobol

To identify genes that contribute to chemotherapy resistance in glioblastoma, we conducted a synthetic lethal screen in a chemotherapy-resistant glioblastoma-derived cell line with the clinical alkylator temozolomide (TMZ) and an siRNA library tailored toward “druggable” targets. Select DNA repair genes in the screen were validated independently, confirming the DNA glycosylases uracil-DNA glycosylase (UNG) and A/G-specific adenine DNA glycosylase (MYH) as well as methylpurine-DNA glycosylase (MPG) to be involved in the response to high dose TMZ. The involvement of UNG and MYH is likely the result of a TMZ-induced burst of reactive oxygen species. We then compared the human TMZ sensitizing genes identified in our screen with those previously identified from alkylator screens conducted in Escherichia coli and Saccharomyces cerevisiae. The conserved biologic processes across all three species compose an alkylation functionome that includes many novel proteins not previously thought to impact alkylator resistance. This high-throughput screen, validation and cross-species analysis was then followed by a mechanistic analysis of two essential nodes: base excision repair (BER) DNA glycosylases (UNG, human and mag1, S. cerevisiae) and protein modification systems, including UBE3B and ICMT in human cells or pby1, lip22, stp22 and aim22 in S. cerevisiae. The conserved processes of BER and protein modification were dual targeted and yielded additive sensitization to alkylators in S. cerevisiae. In contrast, dual targeting of BER and protein modification genes in human cells did not increase sensitivity, suggesting an epistatic relationship. Importantly, these studies provide potential new targets to overcome alkylating agent resistance. Mol Cancer Res; 10(12); 1580–96. ©2012 AACR.


Database | 2012

The gene-specific codon counting database: a genome-based catalog of one-, two-, three-, four- and five-codon combinations present in Saccharomyces cerevisiae genes

Sudheer Tumu; Ashish Patil; William Towns; Madhu Dyavaiah; Thomas J. Begley

A codon consists of three nucleotides and functions during translation to dictate the insertion of a specific amino acid in a growing peptide or, in the case of stop codons, to specify the completion of protein synthesis. There are 64 possible single codons and there are 4096 double, 262 144 triple, 16 777 216 quadruple and 1 073 741 824 quintuple codon combinations available for use by specific genes and genomes. In order to evaluate the use of specific single, double, triple, quadruple and quintuple codon combinations in genes and gene networks, we have developed a codon counting tool and employed it to analyze 5780 Saccharomyces cerevisiae genes. We have also developed visualization approaches, including codon painting, combination and bar graphs, and have used them to identify distinct codon usage patterns in specific genes and groups of genes. Using our developed Gene-Specific Codon Counting Database, we have identified extreme codon runs in specific genes. We have also demonstrated that specific codon combinations or usage patterns are over-represented in genes whose corresponding proteins belong to ribosome or translation-associated biological processes. Our resulting database provides a mineable list of multi-codon data and can be used to identify unique sequence runs and codon usage patterns in individual and functionally linked groups of genes. Database URL: http://www.cs.albany.edu/~tumu/GSCC.html


Molecular Cell | 2007

Trm9-Catalyzed tRNA Modifications Link Translation to the DNA Damage Response

Ulrike Begley; Madhu Dyavaiah; Ashish Patil; John P. Rooney; Dan DiRenzo; Christine M. Young; Douglas S. Conklin; Richard S. Zitomer; Thomas J. Begley


Archive | 2012

DNA Damage Response Research, Inherent and Future Nano-Based Interfaces for Personalized Medicine

Madhu Dyavaiah; Lauren Endres; Yiching Hsieh; William Towns; Thomas J. Begley

Collaboration


Dive into the Madhu Dyavaiah's collaboration.

Top Co-Authors

Avatar

Thomas J. Begley

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Ashish Patil

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Clement T. Y. Chan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

John P. Rooney

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Peter C. Dedon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

William Towns

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christine M. Young

State University of New York System

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge