Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thomas J. Begley is active.

Publication


Featured researches published by Thomas J. Begley.


Science | 2006

A Systems Approach to Mapping DNA Damage Response Pathways

Christopher T. Workman; H. Craig Mak; Scott McCuine; Jean-Bosco Tagne; Maya Agarwal; Owen Ozier; Thomas J. Begley; Leona D. Samson; Trey Ideker

Failure of cells to respond to DNA damage is a primary event associated with mutagenesis and environmental toxicity. To map the transcriptional network controlling the damage response, we measured genomewide binding locations for 30 damage-related transcription factors (TFs) after exposure of yeast to methyl-methanesulfonate (MMS). The resulting 5272 TF-target interactions revealed extensive changes in the pattern of promoter binding and identified damage-specific binding motifs. As systematic functional validation, we identified interactions for which the target changed expression in wild-type cells in response to MMS but was nonresponsive in cells lacking the TF. Validated interactions were assembled into causal pathway models that provide global hypotheses of how signaling, transcription, and phenotype are integrated after damage.


PLOS Genetics | 2010

A Quantitative Systems Approach Reveals Dynamic Control of tRNA Modifications during Cellular Stress

Clement T. Y. Chan; Madhu Dyavaiah; Michael S. DeMott; Koli Taghizadeh; Peter C. Dedon; Thomas J. Begley

Decades of study have revealed more than 100 ribonucleoside structures incorporated as post-transcriptional modifications mainly in tRNA and rRNA, yet the larger functional dynamics of this conserved system are unclear. To this end, we developed a highly precise mass spectrometric method to quantify tRNA modifications in Saccharomyces cerevisiae. Our approach revealed several novel biosynthetic pathways for RNA modifications and led to the discovery of signature changes in the spectrum of tRNA modifications in the damage response to mechanistically different toxicants. This is illustrated with the RNA modifications Cm, m5C, and m2 2G, which increase following hydrogen peroxide exposure but decrease or are unaffected by exposure to methylmethane sulfonate, arsenite, and hypochlorite. Cytotoxic hypersensitivity to hydrogen peroxide is conferred by loss of enzymes catalyzing the formation of Cm, m5C, and m2 2G, which demonstrates that tRNA modifications are critical features of the cellular stress response. The results of our study support a general model of dynamic control of tRNA modifications in cellular response pathways and add to the growing repertoire of mechanisms controlling translational responses in cells.


Nature Communications | 2012

Reprogramming of tRNA modifications controls the oxidative stress response by codon-biased translation of proteins

Clement T. Y. Chan; Yan Ling Joy Pang; Wenjun Deng; I. Ramesh Babu; Madhu Dyavaiah; Thomas J. Begley; Peter C. Dedon

Selective translation of survival proteins is an important facet of the cellular stress response. We recently demonstrated that this translational control involves a stress-specific reprogramming of modified ribonucleosides in tRNA. Here we report the discovery of a step-wise translational control mechanism responsible for survival following oxidative stress. In yeast exposed to hydrogen peroxide, there is a Trm4 methyltransferase-dependent increase in the proportion of tRNALEU(CAA) containing m5C at the wobble position, which causes selective translation of mRNA from genes enriched in the TTG codon. Of these genes, oxidative stress increases protein expression from the TTG-enriched ribosomal protein gene RPL22A, but not its unenriched paralog. Loss of either TRM4 or RPL22A confers hypersensitivity to oxidative stress. Proteomic analysis reveals that oxidative stress causes a significant translational bias toward proteins coded by TTG-enriched genes. These results point to stress-induced reprogramming of tRNA modifications and consequential reprogramming of ribosomes in translational control of cell survival.


Proceedings of the National Academy of Sciences of the United States of America | 2004

Global network analysis of phenotypic effects: Protein networks and toxicity modulation in Saccharomyces cerevisiae

Maya R. Said; Thomas J. Begley; Alan V. Oppenheim; Douglas A. Lauffenburger; Leona D. Samson

Using genome-wide information to understand holistically how cells function is a major challenge of the postgenomic era. Recent efforts to understand molecular pathway operation from a global perspective have lacked experimental data on phenotypic context, so insights concerning biologically relevant network characteristics of key genes or proteins have remained largely speculative. Here, we present a global network investigation of the genotype/phenotype data set we developed for the recovery of the yeast Saccharomyces cerevisiae from exposure to DNA-damaging agents, enabling explicit study of how protein–protein interaction network characteristics may be associated with phenotypic functional effects. We show that toxicity-modulating proteins have similar topological properties as essential proteins, suggesting that cells initiate highly coordinated responses to damage similar to those needed for vital cellular functions. We also identify toxicologically important protein complexes, pathways, and modules. These results have potential implications for understanding toxicity-modulating processes relevant to a number of human diseases, including cancer and aging.


Environmental Health Perspectives | 2014

Mitochondria, energetics, epigenetics, and cellular responses to stress

Daniel T. Shaughnessy; Kimberly A. McAllister; Leroy Worth; Astrid C. Haugen; Joel N. Meyer; Frederick E. Domann; Bennett Van Houten; Raul Mostoslavsky; Scott J. Bultman; Andrea Baccarelli; Thomas J. Begley; Robert W. Sobol; Matthew D. Hirschey; Trey Ideker; Janine H. Santos; William C. Copeland; Raymond R. Tice; David M. Balshaw; Frederick L. Tyson

Background: Cells respond to environmental stressors through several key pathways, including response to reactive oxygen species (ROS), nutrient and ATP sensing, DNA damage response (DDR), and epigenetic alterations. Mitochondria play a central role in these pathways not only through energetics and ATP production but also through metabolites generated in the tricarboxylic acid cycle, as well as mitochondria–nuclear signaling related to mitochondria morphology, biogenesis, fission/fusion, mitophagy, apoptosis, and epigenetic regulation. Objectives: We investigated the concept of bidirectional interactions between mitochondria and cellular pathways in response to environmental stress with a focus on epigenetic regulation, and we examined DNA repair and DDR pathways as examples of biological processes that respond to exogenous insults through changes in homeostasis and altered mitochondrial function. Methods: The National Institute of Environmental Health Sciences sponsored the Workshop on Mitochondria, Energetics, Epigenetics, Environment, and DNA Damage Response on 25–26 March 2013. Here, we summarize key points and ideas emerging from this meeting. Discussion: A more comprehensive understanding of signaling mechanisms (cross-talk) between the mitochondria and nucleus is central to elucidating the integration of mitochondrial functions with other cellular response pathways in modulating the effects of environmental agents. Recent studies have highlighted the importance of mitochondrial functions in epigenetic regulation and DDR with environmental stress. Development and application of novel technologies, enhanced experimental models, and a systems-type research approach will help to discern how environmentally induced mitochondrial dysfunction affects key mechanistic pathways. Conclusions: Understanding mitochondria–cell signaling will provide insight into individual responses to environmental hazards, improving prediction of hazard and susceptibility to environmental stressors. Citation: Shaughnessy DT, McAllister K, Worth L, Haugen AC, Meyer JN, Domann FE, Van Houten B, Mostoslavsky R, Bultman SJ, Baccarelli AA, Begley TJ, Sobol RW, Hirschey MD, Ideker T, Santos JH, Copeland WC, Tice RR, Balshaw DM, Tyson FL. 2014. Mitochondria, energetics, epigenetics, and cellular responses to stress. Environ Health Perspect 122:1271–1278; http://dx.doi.org/10.1289/ehp.1408418


Nature Protocols | 2014

Quantitative analysis of ribonucleoside modifications in tRNA by HPLC-coupled mass spectrometry

Dan Su; Clement T. Y. Chan; Chen Gu; Kok Seong Lim; Yok Hian Chionh; Megan E. McBee; Brandon S. Russell; I. Ramesh Babu; Thomas J. Begley; Peter C. Dedon

Post-transcriptional modification of RNA is an important determinant of RNA quality control, translational efficiency, RNA-protein interactions and stress response. This is illustrated by the observation of toxicant-specific changes in the spectrum of tRNA modifications in a stress-response mechanism involving selective translation of codon-biased mRNA for crucial proteins. To facilitate systems-level studies of RNA modifications, we developed a liquid chromatography–mass spectrometry (LC-MS) technique for the quantitative analysis of modified ribonucleosides in tRNA. The protocol includes tRNA purification by HPLC, enzymatic hydrolysis, reversed-phase HPLC resolution of the ribonucleosides, and identification and quantification of individual ribonucleosides by LC-MS via dynamic multiple reaction monitoring (DMRM). In this approach, the relative proportions of modified ribonucleosides are quantified in several micrograms of tRNA in a 15-min LC-MS run. This protocol can be modified to analyze other types of RNA by modifying the steps for RNA purification as appropriate. By comparison, traditional methods for detecting modified ribonucleosides are labor- and time-intensive, they require larger RNA quantities, they are modification-specific or require radioactive labeling.


RNA Biology | 2012

Translational infidelity-induced protein stress results from a deficiency in Trm9-catalyzed tRNA modifications

Ashish Patil; Clement T. Y. Chan; Madhu Dyavaiah; John P. Rooney; Peter C. Dedon; Thomas J. Begley

Correct codon-anticodon pairing promotes translational fidelity, with these interactions greatly facilitated by modified nucleosides found in tRNA. We hypothesized that wobble uridine modifications catalyzed by tRNA methyltransferase 9 (Trm9) are essential for translational fidelity. In support, we have used phenotypic, reporter and protein-based assays to demonstrate increased translational infidelity in trm9Δ Saccharomyces cerevisiae cells. Codon reengineering studies suggest that Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific genes, those rich in arginine and glutamic acid codons from mixed boxes. Using quantitative tRNA modification analysis, we determined that trm9Δ cells are only deficient in 2 of 23 tRNA modifications, with those 2, 5-methoxycarbonylmethyluridine (mcm5U) and 5-methoxycarbonylmethyl-2-thiouridine (mcm5s2U), classified as key determinants of translational fidelity. We also show that in the absence of mcm5U and mcm5s2U, the resulting translational infidelity promotes protein errors and activation of unfolded protein and heat shock responses. These data support a model in which Trm9-catalyzed tRNA modifications promote fidelity during the translation of specific transcripts, with decreased wobble base modification leading to translational infidelity, protein errors and activation of protein stress response pathways.


DNA and Cell Biology | 2012

Transfer RNA Methytransferases and Their Corresponding Modifications in Budding Yeast and Humans: Activities, Predications, and Potential Roles in Human Health

William Towns; Thomas J. Begley

Throughout the kingdoms of life, transfer RNA (tRNA) undergoes over 100 enzyme-catalyzed, methyl-based modifications. Although a majority of the methylations are conserved from bacteria to mammals, the functions of a number of these modifications are unknown. Many of the proteins responsible for tRNA methylation, named tRNA methyltransferases (Trms), have been characterized in Saccharomyces cerevisiae. In contrast, only a few human Trms have been characterized. A BLAST search for human homologs of each S. cerevisiae Trm revealed a total of 34 human proteins matching our search criteria for an S. cerevisiae Trm homolog candidate. We have compiled a database cataloging basic information about each human and yeast Trm. Every S. cerevisiae Trm has at least one human homolog, while several Trms have multiple candidates. A search of cancer cell versus normal cell mRNA expression studies submitted to Oncomine found that 30 of the homolog genes display a significant change in mRNA expression levels in at least one data set. While 6 of the 34 human homolog candidates have confirmed tRNA methylation activity, the other candidates remain uncharacterized. We believe that our database will serve as a resource for investigating the role of human Trms in cellular stress signaling.


Chemical Research in Toxicology | 2014

A system of RNA modifications and biased codon use controls cellular stress response at the level of translation.

Peter C. Dedon; Thomas J. Begley

Cells respond to environmental stressors and xenobiotic exposures using regulatory networks to control gene expression, and there is an emerging appreciation for the role of numerous postsynthetic chemical modifications of DNA, RNA, and proteins in controlling transcription and translation of the stress response. In this Perspective, we present a model for a new network that regulates the cellular response to xenobiotic exposures and other stresses in which stress-induced reprogramming of a system of dozens of post-transcriptional modifications on tRNA (tRNA) promotes selective translation of codon-biased mRNAs for critical response proteins. As a product of novel genomic and bioanalytical technologies, this model has strong parallels with the regulatory networks of DNA methylation in epigenetics and the variety of protein secondary modifications comprising signaling pathways and the histone code. When present at the tRNA wobble position, the modified ribonucleosides enhance the translation of mRNAs in which the cognate codons of the tRNAs are highly over-represented and that represent critical stress response proteins. A parallel system may also downregulate the translation of families of proteins. Notably, dysregulation of the tRNA methyltransferase enzymes in humans has also been implicated in cancer etiology, with demonstrated oncogenic and tumor-suppressive effects.


Cell Cycle | 2012

Increased tRNA modification and gene-specific codon usage regulate cell cycle progression during the DNA damage response

Ashish Patil; Madhu Dyavaiah; Fraulin Joseph; John P. Rooney; Clement T. Y. Chan; Peter C. Dedon; Thomas J. Begley

S-phase and DNA damage promote increased ribonucleotide reductase (RNR) activity. Translation of RNR1 has been linked to the wobble uridine modifying enzyme tRNA methyltransferase 9 (Trm9). We predicted that changes in tRNA modification would translationally regulate RNR1 after DNA damage to promote cell cycle progression. In support, we demonstrate that the Trm9-dependent tRNA modification 5-methoxycarbonylmethyluridine (mcm⁵U) is increased in hydroxyurea (HU)-induced S-phase cells, relative to G₁ and G₂, and that mcm⁵U is one of 16 tRNA modifications whose levels oscillate during the cell cycle. Codon-reporter data matches the mcm⁵U increase to Trm9 and the efficient translation of AGA codons and RNR1. Further, we show that in trm9Δ cells reduced Rnr1 protein levels cause delayed transition into S-phase after damage. Codon re-engineering of RNR1 increased the number of trm9Δ cells that have transitioned into S-phase 1 h after DNA damage and that have increased Rnr1 protein levels, similar to that of wild-type cells expressing native RNR1. Our data supports a model in which codon usage and tRNA modification are regulatory components of the DNA damage response, with both playing vital roles in cell cycle progression.

Collaboration


Dive into the Thomas J. Begley's collaboration.

Top Co-Authors

Avatar

Peter C. Dedon

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Leona D. Samson

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Ulrike Begley

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Ashish Patil

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Clement T. Y. Chan

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Madhu Dyavaiah

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

John P. Rooney

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

Lauren Endres

State University of New York System

View shared research outputs
Top Co-Authors

Avatar

I. Ramesh Babu

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar

Chen Gu

Massachusetts Institute of Technology

View shared research outputs
Researchain Logo
Decentralizing Knowledge