Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Magdalen Lindeberg is active.

Publication


Featured researches published by Magdalen Lindeberg.


Proceedings of the National Academy of Sciences of the United States of America | 2003

The complete genome sequence of the Arabidopsis and tomato pathogen Pseudomonas syringae pv. tomato DC3000

C. Robin Buell; Vinita Joardar; Magdalen Lindeberg; Jeremy D. Selengut; Ian T. Paulsen; Michelle L. Gwinn; Robert J. Dodson; Robert T. DeBoy; A. Scott Durkin; James F. Kolonay; Ramana Madupu; Sean C. Daugherty; Lauren M. Brinkac; Maureen J. Beanan; Daniel H. Haft; William C. Nelson; Tanja Davidsen; Nikhat Zafar; Liwei Zhou; Jia Liu; Qiaoping Yuan; Hoda Khouri; Nadia Fedorova; Bao Tran; Daniel Russell; Kristi Berry; Teresa Utterback; Susan Van Aken; Tamara Feldblyum; Mark D'Ascenzo

We report the complete genome sequence of the model bacterial pathogen Pseudomonas syringae pathovar tomato DC3000 (DC3000), which is pathogenic on tomato and Arabidopsis thaliana. The DC3000 genome (6.5 megabases) contains a circular chromosome and two plasmids, which collectively encode 5,763 ORFs. We identified 298 established and putative virulence genes, including several clusters of genes encoding 31 confirmed and 19 predicted type III secretion system effector proteins. Many of the virulence genes were members of paralogous families and also were proximal to mobile elements, which collectively comprise 7% of the DC3000 genome. The bacterium possesses a large repertoire of transporters for the acquisition of nutrients, particularly sugars, as well as genes implicated in attachment to plant surfaces. Over 12% of the genes are dedicated to regulation, which may reflect the need for rapid adaptation to the diverse environments encountered during epiphytic growth and pathogenesis. Comparative analyses confirmed a high degree of similarity with two sequenced pseudomonads, Pseudomonas putida and Pseudomonas aeruginosa, yet revealed 1,159 genes unique to DC3000, of which 811 lack a known function.


Journal of Bacteriology | 2005

Whole-Genome Sequence Analysis of Pseudomonas syringae pv. phaseolicola 1448A Reveals Divergence among Pathovars in Genes Involved in Virulence and Transposition

Vinita Joardar; Magdalen Lindeberg; Robert W. Jackson; Jeremy D. Selengut; Robert J. Dodson; Lauren M. Brinkac; Sean C. Daugherty; Robert T. DeBoy; A. Scott Durkin; Michelle G. Giglio; Ramana Madupu; William C. Nelson; M. J. Rosovitz; Steven A. Sullivan; Jonathan Crabtree; Todd Creasy; Tanja Davidsen; Daniel H. Haft; Nikhat Zafar; Liwei Zhou; Rebecca A. Halpin; Tara Holley; Hoda Khouri; Tamara Feldblyum; Owen White; Claire M. Fraser; Arun K. Chatterjee; Sam Cartinhour; David J. Schneider; John W. Mansfield

Pseudomonas syringae pv. phaseolicola, a gram-negative bacterial plant pathogen, is the causal agent of halo blight of bean. In this study, we report on the genome sequence of P. syringae pv. phaseolicola isolate 1448A, which encodes 5,353 open reading frames (ORFs) on one circular chromosome (5,928,787 bp) and two plasmids (131,950 bp and 51,711 bp). Comparative analyses with a phylogenetically divergent pathovar, P. syringae pv. tomato DC3000, revealed a strong degree of conservation at the gene and genome levels. In total, 4,133 ORFs were identified as putative orthologs in these two pathovars using a reciprocal best-hit method, with 3,941 ORFs present in conserved, syntenic blocks. Although these two pathovars are highly similar at the physiological level, they have distinct host ranges; 1448A causes disease in beans, and DC3000 is pathogenic on tomato and Arabidopsis. Examination of the complement of ORFs encoding virulence, fitness, and survival factors revealed a substantial, but not complete, overlap between these two pathovars. Another distinguishing feature between the two pathovars is their distinctive sets of transposable elements. With access to a fifth complete pseudomonad genome sequence, we were able to identify 3,567 ORFs that likely comprise the core Pseudomonas genome and 365 ORFs that are P. syringae specific.


Trends in Microbiology | 2002

Genomic mining type III secretion system effectors in Pseudomonas syringae yields new picks for all TTSS prospectors

Alan Collmer; Magdalen Lindeberg; Tanja Petnicki-Ocwieja; David J. Schneider; James R. Alfano

Many bacterial pathogens of plants and animals use a type III secretion system (TTSS) to deliver virulence effector proteins into host cells. Because effectors are heterogeneous in sequence and function, there has not been a systematic way to identify the genes encoding them in pathogen genomes, and our current inventories are probably incomplete. A pre-closure draft sequence of Pseudomonas syringae pv. tomato DC3000, a pathogen of tomato and Arabidopsis, has recently supported five complementary studies which, collectively, identify 36 TTSS-secreted proteins and many more candidate effectors in this strain. These studies demonstrate the advantages of combining experimental and computational approaches, and they yield new insights into TTSS effectors and virulence regulation in P. syringae, potential effector targeting signals in all TTSS-dependent pathogens, and strategies for finding TTSS effectors in other bacteria that have sequenced genomes.


Current Opinion in Microbiology | 2009

Pseudomonas syringae type III secretion system effectors: repertoires in search of functions

Sébastien Cunnac; Magdalen Lindeberg; Alan Collmer

The ability of Pseudomonas syringae to grow and cause diseases in plants is dependent on the injection of multiple effector proteins into plant cells via the type III secretion system (T3SS). Genome-enabled bioinformatic/experimental methods have comprehensively identified the repertoires of effectors and related T3SS substrates for P. syringae pv. tomato DC3000 and three other sequenced strains. The effector repertoires are diverse and internally redundant. Insights into effector functions are being gained through the construction of mutants lacking one or more effector genes, which may be reduced in growth in planta, and through gain-of-function assays for the ability of single effectors to suppress plant innate immune defenses, manipulate hormone signaling, elicit cell death, and/or display biochemical activities on plant protein targets.


Trends in Microbiology | 2012

Pseudomonas syringae type III effector repertoires: last words in endless arguments

Magdalen Lindeberg; Sébastien Cunnac; Alan Collmer

Many plant pathogens subvert host immunity by injecting compositionally diverse but functionally similar repertoires of cytoplasmic effector proteins. The bacterial pathogen Pseudomonas syringae is a model for exploring the functional structure of such repertoires. The pangenome of P. syringae encodes 57 families of effectors injected by the type III secretion system. Distribution of effector genes among phylogenetically diverse strains reveals a small set of core effectors targeting antimicrobial vesicle trafficking and a much larger set of variable effectors targeting kinase-based recognition processes. Complete disassembly of the 28-effector repertoire of a model strain and reassembly of a minimal functional repertoire reveals the importance of simultaneously attacking both processes. These observations, coupled with growing knowledge of effector targets in plants, support a model for coevolving molecular dialogs between effector repertoires and plant immune systems that emphasizes mutually-driven expansion of the components governing recognition.


Molecular Plant-microbe Interactions | 2006

Closing the circle on the discovery of genes encoding Hrp regulon members and type III secretion system effectors in the genomes of three model Pseudomonas syringae strains

Magdalen Lindeberg; Samuel Cartinhour; Christopher R. Myers; Lisa M. Schechter; David J. Schneider; Alan Collmer

Pseudomonas syringae strains translocate large and distinct collections of effector proteins into plant cells via the type III secretion system (T3SS). Mutations in T3SS-encoding hrp genes are unable to elicit the hypersensitive response or pathogenesis in nonhost and host plants, respectively. Mutations in individual effectors lack strong phenotypes, which has impeded their discovery. P. syringae effectors are designated Hop (Hrp outer protein) or Avr (avirulence) proteins. Some Hop proteins are considered to be extracellular T3SS helpers acting at the plant-bacterium interface. Identification of complete sets of effectors and related proteins has been enabled by the application of bioinformatic and high-throughput experimental techniques to the complete genome sequences of three model strains: P. syringae pv. tomato DC3000, P. syringae pv. phaseolicola 1448A, and P. syringae pv. syringae B728a. Several recent papers, including three in this issue of Molecular Plant-Microbe Interactions, address the effector inventories of these strains. These studies establish that active effector genes in P. syringae are expressed by the HrpL alternative sigma factor and can be predicted on the basis of cis Hrp promoter sequences and N-terminal amino-acid patterns. Among the three strains analyzed, P. syringae pv. tomato DC3000 has the largest effector inventory and P. syringae pv. syringae B728a has the smallest. Each strain has several effector genes that appear inactive. Only five of the 46 effector families that are represented in these three strains have an active member in all of the strains. Web-based community resources for managing and sharing growing information on these complex effector arsenals should help future efforts to understand how effectors promote P. syringae virulence.


PLOS Pathogens | 2011

The plant pathogen Pseudomonas syringae pv. tomato is genetically monomorphic and under strong selection to evade tomato immunity.

Rongman Cai; James P. Lewis; Shuangchun Yan; Haijie Liu; Christopher R. Clarke; Francesco Campanile; Nalvo F. Almeida; David J. Studholme; Magdalen Lindeberg; David J. Schneider; Massimo Zaccardelli; João C. Setubal; Nadia P. Morales-Lizcano; Adriana Bernal; Gitta Coaker; Christy Baker; Carol L. Bender; Scotland Leman; Boris A. Vinatzer

Recently, genome sequencing of many isolates of genetically monomorphic bacterial human pathogens has given new insights into pathogen microevolution and phylogeography. Here, we report a genome-based micro-evolutionary study of a bacterial plant pathogen, Pseudomonas syringae pv. tomato. Only 267 mutations were identified between five sequenced isolates in 3,543,009 nt of analyzed genome sequence, which suggests a recent evolutionary origin of this pathogen. Further analysis with genome-derived markers of 89 world-wide isolates showed that several genotypes exist in North America and in Europe indicating frequent pathogen movement between these world regions. Genome-derived markers and molecular analyses of key pathogen loci important for virulence and motility both suggest ongoing adaptation to the tomato host. A mutational hotspot was found in the type III-secreted effector gene hopM1. These mutations abolish the cell death triggering activity of the full-length protein indicating strong selection for loss of function of this effector, which was previously considered a virulence factor. Two non-synonymous mutations in the flagellin-encoding gene fliC allowed identifying a new microbe associated molecular pattern (MAMP) in a region distinct from the known MAMP flg22. Interestingly, the ancestral allele of this MAMP induces a stronger tomato immune response than the derived alleles. The ancestral allele has largely disappeared from todays Pto populations suggesting that flagellin-triggered immunity limits pathogen fitness even in highly virulent pathogens. An additional non-synonymous mutation was identified in flg22 in South American isolates. Therefore, MAMPs are more variable than expected differing even between otherwise almost identical isolates of the same pathogen strain.


Molecular Plant-microbe Interactions | 2009

A Draft Genome Sequence of Pseudomonas syringae pv. tomato T1 Reveals a Type III Effector Repertoire Significantly Divergent from That of Pseudomonas syringae pv. tomato DC3000

Nalvo F. Almeida; Shuangchun Yan; Magdalen Lindeberg; David J. Studholme; David J. Schneider; Bradford Condon; Haijie Liu; Carlos Juliano M. Viana; Andrew S. Warren; Clive Evans; Eric Kemen; Daniel MacLean; Aurelie Angot; Gregory B. Martin; Jonathan D. G. Jones; Alan Collmer; João C. Setubal; Boris A. Vinatzer

Diverse gene products including phytotoxins, pathogen-associated molecular patterns, and type III secreted effectors influence interactions between Pseudomonas syringae strains and plants, with additional yet uncharacterized factors likely contributing as well. Of particular interest are those interactions governing pathogen-host specificity. Comparative genomics of closely related pathogens with different host specificity represents an excellent approach for identification of genes contributing to host-range determination. A draft genome sequence of Pseudomonas syringae pv. tomato T1, which is pathogenic on tomato but nonpathogenic on Arabidopsis thaliana, was obtained for this purpose and compared with the genome of the closely related A. thaliana and tomato model pathogen P. syringae pv. tomato DC3000. Although the overall genetic content of each of the two genomes appears to be highly similar, the repertoire of effectors was found to diverge significantly. Several P. syringae pv. tomato T1 effectors absent from strain DC3000 were confirmed to be translocated into plants, with the well-studied effector AvrRpt2 representing a likely candidate for host-range determination. However, the presence of avrRpt2 was not found sufficient to explain A. thaliana resistance to P. syringae pv. tomato T1, suggesting that other effectors and possibly type III secretion system-independent factors also play a role in this interaction.


Molecular Plant-microbe Interactions | 2005

Proposed Guidelines for a Unified Nomenclature and Phylogenetic Analysis of Type III Hop Effector Proteins in the Plant Pathogen Pseudomonas syringae

Magdalen Lindeberg; John Stavrinides; Jeffrey H. Chang; James R. Alfano; Alan Collmer; Jeffery L. Dangl; Jean T. Greenberg; John W. Mansfield; David S. Guttman

Pathovars of Pseudomonas syringae interact with their plant hosts via the action of Hrp outer protein (Hop) effector proteins, injected into plant cells by the type III secretion system (TTSS). Recent availability of complete genome sequences for a number of P. syringae pathovars has led to a significant increase in the rate of effector discovery. However, lack of a systematic nomenclature has resulted in multiple names being assigned to the same Hop, unrelated Hops designated by the same alphabetic character, and failure of name choices to reflect consistent standards of experimental confirmation or phylogenetic relatedness. Therefore, specific experimental and bioinformatic criteria are proposed for proteins to be designated as Hops. A generic Hop name structure, HopXY#pv strain, also is proposed, wherein family membership is indicated by the alphabetic characters, subgroup membership numerically, and source pathovar and strain in subscript. Guidelines are provided for phylogenetic characterization and name selection for Hops that are novel, related to previously characterized Hops, chimeras, pseudogenes, truncations, or nonexpressed alleles. Phylogenetic analyses of previously characterized Hops are described, the results of which have been used to guide their integration into the proposed nomenclature.


Nucleic Acids Research | 2007

PHI-base update: additions to the pathogen–host interaction database

Rainer Winnenburg; Martin Urban; Andrew M. Beacham; Thomas K. Baldwin; Sabrina Holland; Magdalen Lindeberg; Hilde Hansen; Christopher J. Rawlings; Kim E. Hammond-Kosack; Jacob Köhler

The pathogen–host interaction database (PHI-base) is a web-accessible database that catalogues experimentally verified pathogenicity, virulence and effector genes from bacterial, fungal and Oomycete pathogens, which infect human, animal, plant, insect, fish and fungal hosts. Plant endophytes are also included. PHI-base is therefore an invaluable resource for the discovery of genes in medically and agronomically important pathogens, which may be potential targets for chemical intervention. The database is freely accessible to both academic and non-academic users. This publication describes recent additions to the database and both current and future applications. The number of fields that characterize PHI-base entries has almost doubled. Important additional fields deal with new experimental methods, strain information, pathogenicity islands and external references that link the database to external resources, for example, gene ontology terms and Locus IDs. Another important addition is the inclusion of anti-infectives and their target genes that makes it possible to predict the compounds, that may interact with newly identified virulence factors. In parallel, the curation process has been improved and now involves several external experts. On the technical side, several new search tools have been provided and the database is also now distributed in XML format. PHI-base is available at: http://www.phi-base.org/.

Collaboration


Dive into the Magdalen Lindeberg's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Surya Saha

Boyce Thompson Institute for Plant Research

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Wayne B. Hunter

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Vinita Joardar

J. Craig Venter Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bryan S. Biehl

University of Wisconsin-Madison

View shared research outputs
Top Co-Authors

Avatar

C. Robin Buell

Michigan State University

View shared research outputs
Researchain Logo
Decentralizing Knowledge