Mahmoud Shirali
Aarhus University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Mahmoud Shirali.
Molecular Genetics and Genomics | 2017
Henry Reyer; Mahmoud Shirali; Siriluck Ponsuksili; Eduard Murani; Patrick F. Varley; Just Jensen; Klaus Wimmers
The consideration of feed efficiency traits is highly relevant in animal breeding due to economic and ecologic impacts of the efficient usage and utilization of feed resources. In pigs, corresponding observations are recorded using automatic feeding stations and serve as one of the main criteria in most pig selection programmes. Simultaneously, feeding stations also generate feeding behaviour data which represent a nearly unused resource and provide a valuable proxy measure of health status, animal welfare, and management practices. In the current study, an integrated approach was applied to a feed efficiency tested and genome-wide genotyped terminal sire line population. Therefore, genetic analyses were performed combining a single-marker based approach and a Bayesian multi-marker algorithm. Major quantitative trait loci (QTL) for feeding behaviour traits comprising daily occupation time, daily feeder visit, and daily feeding rate were identified on chromosomes 1, 4, 6, 7, 8, and 14. Feed efficiency was represented by feed conversion ratio and daily feed intake revealing prominent genomic regions on chromosomes 1, 6, 9, and 11. The positional and functional candidate genes identified are involved in transport processes like AQP4, SLC22A23, and SLC6A14 as well as energy sensing, generation, and utilization as exemplified by PPP3CA, IQGAP3, ECI2, and DnaJC15. These molecular features provide the first step towards the dissection of the genetic connection between distinct feeding behaviour patterns, feed efficiency and performance, health, and welfare traits driving the implementation of these traits in breeding programmes and pig husbandry.
Animal | 2015
Mahmoud Shirali; Vivi Hunnicke Nielsen; Steen Henrik Møller; Just Jensen
The aim of this study was to determine the genetic background of longitudinal residual feed intake (RFI) and BW gain in farmed mink using random regression methods considering heterogeneous residual variances. The individual BW was measured every 3 weeks from 63 to 210 days of age for 2139 male+female pairs of juvenile mink during the growing-furring period. Cumulative feed intake was calculated six times with 3-week intervals based on daily feed consumption between weighings from 105 to 210 days of age. Genetic parameters for RFI and BW gain in males and females were obtained using univariate random regression with Legendre polynomials containing an animal genetic effect and permanent environmental effect of litter along with heterogeneous residual variances. Heritability estimates for RFI increased with age from 0.18 (0.03, posterior standard deviation (PSD)) at 105 days of age to 0.49 (0.03, PSD) and 0.46 (0.03, PSD) at 210 days of age in male and female mink, respectively. The heritability estimates for BW gain increased with age and had moderate to high range for males (0.33 (0.02, PSD) to 0.84 (0.02, PSD)) and females (0.35 (0.03, PSD) to 0.85 (0.02, PSD)). RFI estimates during the growing period (105 to 126 days of age) showed high positive genetic correlations with the pelting RFI (210 days of age) in male (0.86 to 0.97) and female (0.92 to 0.98). However, phenotypic correlations were lower from 0.47 to 0.76 in males and 0.61 to 0.75 in females. Furthermore, BW records in the growing period (63 to 126 days of age) had moderate (male: 0.39, female: 0.53) to high (male: 0.87, female: 0.94) genetic correlations with pelting BW (210 days of age). The result of current study showed that RFI and BW in mink are highly heritable, especially at the late furring period, suggesting potential for large genetic gains for these traits. The genetic correlations suggested that substantial genetic gain can be obtained by only considering the RFI estimate and BW at pelting, however, lower genetic correlations than unity indicate that extra genetic gain can be obtained by including estimates of these traits during the growing period. This study suggests random regression methods are suitable for analysing feed efficiency and BW gain; and genetic selection for RFI in mink is promising.
Journal of Animal Science | 2017
Mahmoud Shirali; A. B. Strathe; Thomas Mark; Bjarne Nielsen; Just Jensen
A novel Horizontal model is presented for multitrait analysis of longitudinal traits through random regression analysis combined with single recorded traits. Weekly ADFI on test for Danish Duroc, Landrace, and Yorkshire boars were available from the national test station and were collected from 30 to 100 kg BW. Single recorded production traits of ADG from birth to 30 kg BW (ADG30), ADG from 30 to 100 kg BW (ADG100), and lean meat percentage (LMP) were available from breeding herds or the national test station. The Horizontal model combined random regression analysis of feed intake (FI) with single recorded traits of ADG100, LMP, and ADG30. In the Horizontal model, the FI data were horizontally structured with FI on each week as a trait. The additive genetic and litter effects were modeled to be common across different FI records by reducing the rank of the covariance matrices using second- and first-order Legendre polynomials of age on test, respectively. The fixed effect and random residual variance were estimated for each weekly FI trait. Residual feed intake (RFI) was derived from the conditional distribution of FI given the breeding values of ADG100 and LMP. The heritability of FI varied by week on test in Duroc (0.12 to 0.19), Landrace (0.13 to 0.22), and Yorkshire (0.21 to 0.23). The heritability of RFI was lowest and highest in wk 6 (0.03) and 10 (0.10), respectively, in Duroc and wk 7 (0.04 and 0.02) and 1 (0.09 and 0.20), respectively, in Landrace and Yorkshire. The proportion of FI genetic variance explained by RFI ranged from 20 to 75% in Duroc, from 19 to 75% in Landrace, and from 11 to 91% in Yorkshire. Average daily gain from 30 to 100 kg BW and ADG30 heritabilities were moderate in Duroc (0.24 and 0.22, respectively), Landrace (0.34 and 0.25, respectively), and Yorkshire (0.34 and 0.22, respectively). Lean meat percentage heritability was moderate in Duroc (0.37) and large in Landrace (0.62) and Yorkshire (0.60). The genetic correlation of FI with ADG100 increased by week on test followed by a 32% decrease from wk 7 in Duroc and a 7% decrease in dam line breeds. Defining RFI as genetically independent of production traits leads to consistent and easy interpretable breeding values. The genetic parameters of traits in the feed efficiency complex and their dynamics over the test period showed breed differences that could be related to the fatness and growth potential of the breeds. The Horizontal model can be used to simultaneously analyze repeated and single recorded traits through proper modeling of the environmental variances and covariances.
Genetics Selection Evolution | 2018
Mahmoud Shirali; Patrick F. Varley; Just Jensen
BackgroundThis study aimed at (1) deriving Bayesian methods to predict breeding values for ratio (i.e. feed conversion ratio; FCR) or linear (i.e. residual feed intake; RFI) traits; (2) estimating genetic parameters for average daily feed consumption (ADFI), average daily weight gain (ADG), lean meat percentage (LMP) along with the derived traits of RFI and FCR; and (3) deriving Bayesian estimates of direct and correlated responses to selection on RFI, FCR, ADG, ADFI, and LMP. Response to selection was defined as the difference in additive genetic mean of the selected top individuals, expected to be parents of the next generation, and the total population after integrating genetic trends out of the posterior distribution of selection responses. Inferences were based on marginal posterior distributions obtained from the Bayesian method for integration over unknown population parameters and “fixed” environmental effects and for appropriate handling of ratio traits. Terminal line pigs (nu2009=u20093724) were used for a multi-variate model for ADFI, ADG, and LMP. RFI was estimated from the conditional distribution of ADFI given ADG and LMP, using either genetic (RFIG) or phenotypic (RFIP) partial regression coefficients. The posterior distribution of the FCR’s breeding values was derived from the posterior distribution of “fixed” environmental effects and additive genetic effects on ADFI and ADG.ResultsPosterior means of heritability were 0.32, 0.26, 0.56, 0.20, and 0.15 for ADFI, ADG, LMP, RFIP, and RFIG, respectively. Selection against RFIG showed a direct response of −u20090.16xa0kg/d and correlated responses of −u20090.16xa0kg/kg for FCR and −u20090.15xa0kg/d for ADFI, with no effect on other production traits. Selection against FCR resulted in a direct response of −u20090.17xa0kg/kg and correlated responses of −u20090.14xa0kg/d for RFIG, −u20090.18xa0kg/d for ADFI, and 0.98% for LMP.ConclusionsThe Bayesian methodology developed here enables prediction of breeding values for FCR and RFI from a single multi-variate model. In addition, we derived posterior distributions of direct and correlated responses to selection. Genetic parameter estimates indicated a genetic basis for the studied traits and that genetic improvement through selection was possible. Direct selection against FCR or RFIP resulted in unexpected responses in production traits.
Genetics Selection Evolution | 2018
Guosheng Su; P. Madsen; Bjarne Nielsen; Tage Ostersen; Mahmoud Shirali; Just Jensen; Ole F. Christensen
BackgroundRecords on groups of individuals rather than on single individuals could be valuable for predicting breeding values (BV) of the traits that are difficult or costly to measure individually, such as feed intake in pigs or beef cattle. Here, we present a model, which handles group records from varying group sizes and involves multiple fixed and random effects, for estimating variance components and predicting BV. Moreover, using simulation, we investigated the efficiency of group records for predicting BV in situations with various group sizes and structures, and factors that affect the trait.ResultsThe results show that the presented model for group records worked well and that variances estimated from group records with varying group sizes were consistent with those estimated from individual records, but with larger standard errors. Ignoring litter and pen effects had very little or no influence on the accuracy of estimated BV (EBV) obtained from group records. However, ignoring litter effects resulted in biased estimates of additive genetic variance and EBV. The presence of litter and pen effects on phenotypes decreased the accuracy of EBV although the prediction model fitted both effects. Having more littermates in the same pen led to a higher accuracy of EBV. The decay of EBV accuracy with increasing group size was more marked for scenarios with litter and pen effects than without. When litters of six individuals were divided into two pens, accuracies of EBV obtained from group records with a size up to 12 (average 9.6) and up to 24 (average 19.2) were 66.6 and 57.6% of those estimated from individual records in the scenario with litter and pen effects on phenotypes. These percentages reached 77.0 and 68.4% in the scenario without litter and pen effects on phenotypes.ConclusionsOur results indicate that the model works appropriately for the analysis of group records from varying group sizes. Using group records for genetic evaluation of traits such as feed intake in pig is feasible and the efficiency of the resulting estimates depends on the size and structure of the groups and on the magnitude of the variances for litter and pen effects.
Livestock Science | 2017
Mahmoud Shirali; Patrick F. Varley; Just Jensen
Proceedings of the World Congress on Genetics Applied to Livestock Production | 2018
Mette Dam Madsen; P. Madsen; Bjarne Nielsen; Torsten Nygaard Kristensen; Just Jensen; Mahmoud Shirali
Proceedings of the World Congress on Genetics Applied to Livestock Production | 2018
Mahmoud Shirali; Patrick Francies Varley; Just Jensen
Proceedings of the World Congress on Genetics Applied to Livestock Production | 2018
Guosheng Su; P. Madsen; Bjarne Nielsen; Tage Ostersen; Mahmoud Shirali; Just Jensen; Ole F. Christensen
Livestock Science | 2017
W. Mebratie; Mahmoud Shirali; P. Madsen; R.L. Sapp; R. Hawken; Just Jensen