Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Vivi Hunnicke Nielsen is active.

Publication


Featured researches published by Vivi Hunnicke Nielsen.


web science | 1995

THE PIGMAP CONSORTIUM LINKAGE MAP OF THE PIG (SUS SCROFA).

Alan Archibald; Chris Haley; J. F. Brown; S. Couperwhite; H A McQueen; D. Nicholson; W. Coppieters; A. Van de Weghe; A. Stratil; Anne Katrine Winterø; Merete Fredholm; N. J. Larsen; Vivi Hunnicke Nielsen; Denis Milan; N. Woloszyn; Annie Robic; M. Dalens; Juliette Riquet; J. Gellin; J. C. Caritez; G. Burgaud; L. Ollivier; J. P. Bidanel; Marcel Vaiman; Christine Renard; H. Geldermann; R. Davoli; D. Ruyter; E. J. M. Verstege; M.A.M. Groenen

A linkage map of the porcine genome has been developed by segregation analysis of 239 genetic markers. Eighty-one of these markers correspond to known genes. Linkage groups have been assigned to all 18 autosomes plus the X Chromosome (Chr). As 69 of the markers on the linkage map have also been mapped physically (by others), there is significant integration of linkage and physical map data. Six informative markers failed to show linkage to these maps. As in other species, the genetic map of the heterogametic sex (male) was significantly shorter (∼16.5 Morgans) than the genetic map of the homogametic sex (female) (∼21.5 Morgans). The sex-averaged genetic map of the pig was estimated to be ∼18 Morgans in length. Mapping information for 61 Type I loci (genes) enhances the contribution of the pig gene map to comparative gene mapping. Because the linkage map incorporates both highly polymorphic Type II loci, predominantly microsatellites, and Type I loci, it will be useful both for large experiments to map quantitative trait loci and for the subsequent isolation of trait genes following a comparative and candidate gene approach.


Animal Behaviour | 2009

Balancing of protein and lipid intake by a mammalian carnivore, the mink, Mustela vison.

David Mayntz; Vivi Hunnicke Nielsen; Allan Sørensen; Søren Toft; David Raubenheimer; Carsten Hejlesen; Stephen J. Simpson

Many herbivores and omnivores can balance their intake of macronutrients when faced with nutritionally variable environments. Carnivores, however, are widely believed to optimize their rates of prey capture and energy intake rather than balancing nutrients. We tested nutrient balancing in captive mink and found a pronounced ability to balance and regulate intake of protein and lipid. When faced with one of several different pairings of complementary foods varying in protein to lipid composition, mink apportioned intake between the two foods to defend a near constant ratio and amount (intake target) of the two macronutrients. When given only one food of fixed nutrient composition, mink balanced macronutrient intake relative to the intake target, without showing the excessive energy intake on diets with a low percentage of protein and energy deficit on diets with a high percentage of protein previously reported for herbivores and omnivores, including humans. This demonstration of nutrient balancing in a carnivorous mammal indicates that the capacity for nutrient balancing is a more general phenomenon across trophic levels than was hitherto believed to be the case.


Mammalian Genome | 2000

Abnormal growth plate function in pigs carrying a dominant mutation in type X collagen

Vivi Hunnicke Nielsen; Christian Bendixen; Jens Arnbjerg; Charlotte M. Sørensen; Henrik Elvang Jensen; Naseer M. Shukri; Bo Thomsen

Abstract. We have identified a naturally occurring, dominant mutation that causes dwarfism in domestic pigs (Sus scrofa). With a positional candidate gene approach, the dwarf phenotype was shown to be a result of a single amino acid change, G590R, in the α1(X) chain of type X collagen. Type X collagen is a homotrimer of α1(X) chains encoded by the COL10A1 gene, which is expressed in hypertrophic chondrocytes during the process of endochondral ossification. An amino acid substitution at the equivalent position in human type X collagen, G595E, has previously been shown to cause Schmid metaphyseal chondrodysplasia (SMCD), which is a relatively mild skeletal disorder associated with dwarfism and growth plate abnormality. Consistent with the clinical phenotype of SMCD patients, radiological and histological examination of the dwarf pigs revealed metaphyseal chondrodysplasia in the long bones. Yeast-based, two-hybrid protein interaction studies and in vitro assembly experiments demonstrated that the amino acid substitution interfered with the ability of the mutated collagen molecules to engage in trimerization. This work establishes that the chondrodysplastic dwarf pigs by genetic, biochemical, radiological and histological criteria provide a valid animal model of SMCD.


Animal Genetics | 2011

Inbreeding affects fecundity of American mink (Neovison vison) in Danish farm mink.

Ditte Demontis; Peter Larsen; H. Bækgaard; M. Sønderup; B. K. Hansen; Vivi Hunnicke Nielsen; Volker Loeschcke; Andrzej Zalewski; H. Zalewska; Cino Pertoldi

Inbreeding is an increasing problem in farmed mink, because of limited exchange of individuals between farms. In this study, genetic relatedness within seven American mink (Neovison vison) colour strains originating from 13 different mink farms in Denmark was analysed using 21 polymorphic microsatellite loci. We detected large differences in the level of relatedness (range 0.017-0.520) within colour strains. Moreover, a very strong and highly significant negative correlation between the level of relatedness and fecundity was observed (r = 0.536, P < 0.001) [Correction added after online publication on 9 March 2011: r(2) has been changed to r]. To our knowledge, this is the first time that such a correlation has been demonstrated for commercially farmed mink.


Journal of Animal Breeding and Genetics | 2017

Microsatellite diversity of the Nordic type of goats in relation to breed conservation: how relevant is pure ancestry?

Johannes A. Lenstra; J Tigchelaar; Iris Biebach; J H Hallsson; Juha Kantanen; Vivi Hunnicke Nielsen; François Pompanon; Saeid Naderi; Hamid-Reza Rezaei; N Saether; O. Ertugrul; Christine Grossen; Glauco Camenisch; M Vos-Loohuis; M van Straten; E A de Poel; J.J. Windig; K. Oldenbroek

In the last decades, several endangered breeds of livestock species have been re-established effectively. However, the successful revival of the Dutch and Danish Landrace goats involved crossing with exotic breeds and the ancestry of the current populations is therefore not clear. We have generated genotypes for 27 FAO-recommended microsatellites of these landraces and three phenotypically similar Nordic-type landraces and compared these breeds with central European, Mediterranean and south-west Asian goats. We found decreasing levels of genetic diversity with increasing distance from the south-west Asian domestication site with a south-east-to-north-west cline that is clearly steeper than the Mediterranean east-to-west cline. In terms of genetic diversity, the Dutch Landrace comes next to the isolated Icelandic breed, which has an extremely low diversity. The Norwegian coastal goat and the Finnish and Icelandic landraces are clearly related. It appears that by a combination of mixed origin and a population bottleneck, the Dutch and Danish Land-races are separated from the other breeds. However, the current Dutch and Danish populations with the multicoloured and long-horned appearance effectively substitute for the original breed, illustrating that for conservation of cultural heritage, the phenotype of a breed is more relevant than pure ancestry and the genetic diversity of the original breed. More in general, we propose that for conservation, the retention of genetic diversity of an original breed and of the visual phenotype by which the breed is recognized and defined needs to be considered separately.


Canadian Journal of Animal Science | 2011

Response to selection and genotype–environment interaction in mink (Neovison vison) selected on ad libitum and restricted feeding

Vivi Hunnicke Nielsen; Steen Henrik Møller; Bente Krogh Hansen; Peer Berg

Nielsen, V. H., Møller, S. H., Hansen, B. K. and Berg, P. 2011. Response to selection and genotype-environment interaction in mink (Neovison vison) selected on ad libitum and restricted feeding. Can. J. Anim. Sci. 91: 231-237. Mink were selected for high November weight (AL line) and low feed conversion ratio (FC line) on ad libitum feeding and for high November weight on restricted feeding (RF line). After three generations of selection, the average estimated breeding value for November weight was 533, 326, and 150 g in males and 168, 82, and -85 g in females in the AL, RF, and FC lines. The breeding value for feed conversion ratio was -1.39, -0.84 and -0.68 kg feed kg-1 gain in males and -0.39, -0.31 and -0.23 kg feed kg-1 gain in females in the selection lines. In generation 4, the AL, RF and FC lines were tested on both ad libitum and restricted feeding. The estimated breeding value for November weight in males in the AL line (533 g) was significantly greater than that in the RF line (384 g) on ad libitum feeding. The corresponding values on restricted feeding were 297 and 326 g, respectively, which were not significantly different. This indicates genotype×environment interaction. In the AL line, selection improved feed conversion ratio by increased appetite. In the RF line, it was improved by increased feed utilization. Environmental sensitivity in males, estimated from breeding values for November weight was 236 g in the AL line and 58 g in the RF line suggesting that the RF line was more robust to changes in feeding conditions. A smaller litter size in the AL line (4.1) than in the RF line (5.6) indicates that selection for large weight affects reproduction.


Journal of Biomechanics | 2009

Intestinal remodelling in mink fed with reduced protein content

Pengmin Chen; Jingbo Zhao; Vivi Hunnicke Nielsen; Tove Clausen; Hans Gregersen

Low protein intake occurs in humans in relation to diseases, starvation and post-operatively. Low-protein diets may affect the gastrointestinal structure and mechanical function. The aim was to study the passive biomechanical properties and tissue remodelling of the intestine in minks on reduced protein diets. Twenty-seven male minks were divided into three groups receiving different protein level in the diet for 6 weeks: High protein level (group H, 55% energy from protein), moderate protein level (group M, 30% energy from protein) and low protein level (group L, 15% energy from protein) (n=9 for each group). Ten centimetre long segments from duodenum, jejunum and ileum were excised at the end of the study period. The mechanical test was performed as a ramp distension experiment. The intestinal diameter and length, wall thickness, wall area and opening angle were obtained from digitized images of the intestinal segments at pre-selected pressures, no-load and zero-stress states, respectively. Circumferential and longitudinal stresses (force per area) and strains (deformation) were computed. The layer thickness was measured from intestinal histological images. No difference in body weight was found between groups at the start of the experiment. However, at the end of the experiment the body weight was smallest in group L (P=0.0003 and 0.0004 compared with groups H and M). Similarly, the wet weight per unit length, wall thickness and area were smallest in group L (P<0.05, P<0.01). The lowest wall thickness was found in the jejunum and ileum in group L (P<0.05), mainly due to decreased mucosa and submucosa thickness. The smallest opening angle and absolute values of residual strain were found in the jejunal segment in group L (P<0.05). No difference was observed for duodenal and ileal segments among the three groups. Feeding the low-protein diet shifted the stress-strain curves to the right for the circumferential direction, indicating the wall become softer in the circumferential direction. However, no significant difference was observed in the longitudinal direction for any of the intestinal segments. In conclusion, this study demonstrated that low-protein diet in minks induce histomorphometric and biomechanical remodelling of the intestine.


Gene | 2012

A re-assigned American mink (Neovison vison) map optimal for genome-wide studies

Razvan Anistoroaei; Vivi Hunnicke Nielsen; Marios Nektarios Markakis; Claus B. Jørgensen; Knud Christensen; Merete Fredholm

Our previously published second generation genetic map for the American mink (Neovison vison) has been used and redesigned in its best for genome-wide studies with maximum of efficiency. A number of 114 selected markers, including 33 newly developed microsatellite markers from the CHORI-231 mink Bacterial Artificial Chromosome (BAC) library, have been genotyped in a two generation population composed of 1200 individuals. The outcome reassigns the position of some markers on the chromosomes and it produces a more reliable map with a convenient distance between markers. A total of 104 markers mapped to 14 linkage groups corresponding to the mink autosomes. Six markers are unlinked and four markers are allocated to the X chromosome by homology but no linkage was detected. The sex-average linkage map spans 1192 centiMorgans (cM) with an average intermarker distance of 11.4cM and 1648cM when the ends of the linkage groups and the autosomal unlinked markers are added. Sex-specific genetic linkage maps were also generated. The male sex-specific map had a total length of 1014.6cM between the linked markers and an average inter-marker interval of 9.7cM. The female map has a corresponding length of 1378.6cM and an average inter-marker interval of 13.3cM. The study is complemented with additional anchorage for most of the chromosomes of the map by BAC in situ hybridization with clones containing microsatellites strategically selected from the various parts of the genome. This map provides an improved tool for genetic mapping and comparative genomics in mink, also useful for the future assembly of the mink genome sequence when this will be taken forward.


Animal | 2015

Longitudinal analysis of residual feed intake and BW in mink using random regression with heterogeneous residual variance

Mahmoud Shirali; Vivi Hunnicke Nielsen; Steen Henrik Møller; Just Jensen

The aim of this study was to determine the genetic background of longitudinal residual feed intake (RFI) and BW gain in farmed mink using random regression methods considering heterogeneous residual variances. The individual BW was measured every 3 weeks from 63 to 210 days of age for 2139 male+female pairs of juvenile mink during the growing-furring period. Cumulative feed intake was calculated six times with 3-week intervals based on daily feed consumption between weighings from 105 to 210 days of age. Genetic parameters for RFI and BW gain in males and females were obtained using univariate random regression with Legendre polynomials containing an animal genetic effect and permanent environmental effect of litter along with heterogeneous residual variances. Heritability estimates for RFI increased with age from 0.18 (0.03, posterior standard deviation (PSD)) at 105 days of age to 0.49 (0.03, PSD) and 0.46 (0.03, PSD) at 210 days of age in male and female mink, respectively. The heritability estimates for BW gain increased with age and had moderate to high range for males (0.33 (0.02, PSD) to 0.84 (0.02, PSD)) and females (0.35 (0.03, PSD) to 0.85 (0.02, PSD)). RFI estimates during the growing period (105 to 126 days of age) showed high positive genetic correlations with the pelting RFI (210 days of age) in male (0.86 to 0.97) and female (0.92 to 0.98). However, phenotypic correlations were lower from 0.47 to 0.76 in males and 0.61 to 0.75 in females. Furthermore, BW records in the growing period (63 to 126 days of age) had moderate (male: 0.39, female: 0.53) to high (male: 0.87, female: 0.94) genetic correlations with pelting BW (210 days of age). The result of current study showed that RFI and BW in mink are highly heritable, especially at the late furring period, suggesting potential for large genetic gains for these traits. The genetic correlations suggested that substantial genetic gain can be obtained by only considering the RFI estimate and BW at pelting, however, lower genetic correlations than unity indicate that extra genetic gain can be obtained by including estimates of these traits during the growing period. This study suggests random regression methods are suitable for analysing feed efficiency and BW gain; and genetic selection for RFI in mink is promising.


Animal Genetics | 2014

Identifying QTL and genetic correlations between fur quality traits in mink (Neovison vison)

Janne Pia Thirstrup; Razvan Anistoroaei; Bernt Guldbrandtsen; Knud Christensen; Merete Fredholm; Vivi Hunnicke Nielsen

Mapping of QTL affecting fur quality traits (guard hair length, guard hair thickness, density of wool, surface of the fur and quality) and skin length was performed in a three-generation mink population (F2 design). In the parental generation, Nordic Brown mink were crossed reciprocally with American Black short nap mink. In all, 1082 mink encompassing three generations were used for the analyses. The mink were genotyped for 104 microsatellites covering all 14 autosomes. The QTL analyses were performed by least-square regression implemented in gridqtl software. Genetic and phenotypic correlations and heritabilities were estimated using the average information-restricted maximum-likelihood method. Evidence was found for QTL affecting fur quality traits on nine autosomes. QTL were detected for guard hair thickness on chromosomes 1, 2, 3, 6 and 13; for guard hair length on chromosomes 2, 3 and 6; for wool density on chromosomes 6 and 13; for surface on chromosomes 7, 12 and 13; for quality on chromosomes 6, 7, 11 and 13; and for skin length on chromosomes 7 and 9. Proximity of locations of QTL for guard hair length, guard hair thickness and for wool density and quality suggests that some of the traits are in part under the influence of the same genes. Traits under the influence of QTL at close or identical positions also were traits that were strongly genotypically correlated. Based on the results of correlation analyses, the most important single traits influencing the quality were found to be density of wool, guard hair thickness and appearance of the surface.

Collaboration


Dive into the Vivi Hunnicke Nielsen's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Helle Jensen

University of Copenhagen

View shared research outputs
Researchain Logo
Decentralizing Knowledge