Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mahreen Arooj is active.

Publication


Featured researches published by Mahreen Arooj.


PLOS ONE | 2013

Identification of Inhibitor Binding Site in Human Sirtuin 2 Using Molecular Docking and Dynamics Simulations

Sugunadevi Sakkiah; Mahreen Arooj; Manian Rajesh Kumar; Soo Hyun Eom; Keun Woo Lee

The ability to identify the site of a protein that can bind with high affinity to small, drug-like compounds has been an important goal in drug design. Sirtuin 2 (SIRT2), histone deacetylase protein family, plays a central role in the regulation of various pathways. Hence, identification of drug for SIRT2 has attracted great interest in the drug discovery community. To elucidate the molecular basis of the small molecules interactions to inhibit the SIRT2 function we employed the molecular docking, molecular dynamics simulations, and the molecular mechanism Poisson-Boltzmann/surface area (MM-PBSA) calculations. Five well know inhibitors such as suramin, mol-6, sirtinol, 67, and nf675 were selected to establish the nature of the binding mode of the inhibitors in the SIRT2 active site. The molecular docking and dynamics simulations results revealed that the hydrogen bonds between Arg97 and Gln167 are crucial to inhibit the function of SIRT2. In addition, the MM-PBSA calculations revealed that binding of inhibitors to SIRT2 is mainly driven by van der Waals/non-polar interactions. Although the five inhibitors are very different in structure, shape, and electrostatic potential, they are able to fit in the same binding pocket. These findings from this study provide insights to elucidate the binding pattern of SIRT2 inhibitors and help in the rational structure-based design of novel SIRT2 inhibitors with improved potency and better resistance profile.


International Journal of Molecular Sciences | 2011

3D QSAR Pharmacophore Modeling, in Silico Screening, and Density Functional Theory (DFT) Approaches for Identification of Human Chymase Inhibitors

Mahreen Arooj; Sundarapandian Thangapandian; Shalini John; Swan Hwang; Jong Keun Park; Keun Woo Lee

Human chymase is a very important target for the treatment of cardiovascular diseases. Using a series of theoretical methods like pharmacophore modeling, database screening, molecular docking and Density Functional Theory (DFT) calculations, an investigation for identification of novel chymase inhibitors, and to specify the key factors crucial for the binding and interaction between chymase and inhibitors is performed. A highly correlating (r = 0.942) pharmacophore model (Hypo1) with two hydrogen bond acceptors, and three hydrophobic aromatic features is generated. After successfully validating “Hypo1”, it is further applied in database screening. Hit compounds are subjected to various drug-like filtrations and molecular docking studies. Finally, three structurally diverse compounds with high GOLD fitness scores and interactions with key active site amino acids are identified as potent chymase hits. Moreover, DFT study is performed which confirms very clear trends between electronic properties and inhibitory activity (IC50) data thus successfully validating “Hypo1” by DFT method. Therefore, this research exertion can be helpful in the development of new potent hits for chymase. In addition, the combinational use of docking, orbital energies and molecular electrostatic potential analysis is also demonstrated as a good endeavor to gain an insight into the interaction between chymase and inhibitors.


BMC Bioinformatics | 2011

Development, evaluation and application of 3D QSAR Pharmacophore model in the discovery of potential human renin inhibitors

Shalini John; Sundarapandian Thangapandian; Mahreen Arooj; Jong Chan Hong; Kwang Dong Kim; Keun Woo Lee

BackgroundRenin has become an attractive target in controlling hypertension because of the high specificity towards its only substrate, angiotensinogen. The conversion of angiotensinogen to angiotensin I is the first and rate-limiting step of renin-angiotensin system and thus designing inhibitors to block this step is focused in this study.MethodsLigand-based quantitative pharmacophore modeling methodology was used in identifying the important molecular chemical features present in the set of already known active compounds and the missing features from the set of inactive compounds. A training set containing 18 compounds including active and inactive compounds with a substantial degree of diversity was used in developing the pharmacophore models. A test set containing 93 compounds, Fischer randomization, and leave-one-out methods were used in the validation of the pharmacophore model. Database screening was performed using the best pharmacophore model as a 3D structural query. Molecular docking and density functional theory calculations were used to select the hit compounds with strong molecular interactions and favorable electronic features.ResultsThe best quantitative pharmacophore model selected was made of one hydrophobic, one hydrogen bond donor, and two hydrogen bond acceptor features with high a correlation value of 0.944. Upon validation using an external test set of 93 compounds, Fischer randomization, and leave-one-out methods, this model was used in database screening to identify chemical compounds containing the identified pharmacophoric features. Molecular docking and density functional theory studies have confirmed that the identified hits possess the essential binding characteristics and electronic properties of potent inhibitors.ConclusionA quantitative pharmacophore model of predictive ability was developed with essential molecular features of a potent renin inhibitor. Using this pharmacophore model, two potential inhibitory leads were identified to be used in designing novel and future renin inhibitors as antihypertensive drugs.


PLOS ONE | 2013

A Combination of Receptor-Based Pharmacophore Modeling & QM Techniques for Identification of Human Chymase Inhibitors

Mahreen Arooj; Sugunadevi Sakkiah; Songmi Kim; Venkatesh Arulalapperumal; Keun Woo Lee

Inhibition of chymase is likely to divulge therapeutic ways for the treatment of cardiovascular diseases, and fibrotic disorders. To find novel and potent chymase inhibitors and to provide a new idea for drug design, we used both ligand-based and structure-based methods to perform the virtual screening(VS) of commercially available databases. Different pharmacophore models generated from various crystal structures of enzyme may depict diverse inhibitor binding modes. Therefore, multiple pharmacophore-based approach is applied in this study. X-ray crystallographic data of chymase in complex with different inhibitors were used to generate four structure–based pharmacophore models. One ligand–based pharmacophore model was also developed from experimentally known inhibitors. After successful validation, all pharmacophore models were employed in database screening to retrieve hits with novel chemical scaffolds. Drug-like hit compounds were subjected to molecular docking using GOLD and AutoDock. Finally four structurally diverse compounds with high GOLD score and binding affinity for several crystal structures of chymase were selected as final hits. Identification of final hits by three different pharmacophore models necessitates the use of multiple pharmacophore-based approach in VS process. Quantum mechanical calculation is also conducted for analysis of electrostatic characteristics of compounds which illustrates their significant role in driving the inhibitor to adopt a suitable bioactive conformation oriented in the active site of enzyme. In general, this study is used as example to illustrate how multiple pharmacophore approach can be useful in identifying structurally diverse hits which may bind to all possible bioactive conformations available in the active site of enzyme. The strategy used in the current study could be appropriate to design drugs for other enzymes as well.


PLOS ONE | 2013

Insight the C-Site Pocket Conformational Changes Responsible for Sirtuin 2 Activity Using Molecular Dynamics Simulations

Sugunadevi Sakkiah; Mahreen Arooj; Guang Ping Cao; Keun Woo Lee

Sirtuin belongs to a family of typical histone deacetylase which regulates the fundamental cellular biological processes including gene expression, genome stability, mitosis, nutrient metabolism, aging, mitochondrial function, and cell motility. Michael et. al. reported that B-site mutation (Q167A and H187A) decreased the SIRT2 activity but still the structural changes were not reported. Hence, we performed 5 ns molecular dynamics (MD) simulation on SIRT2 Apo-form and complexes with substrate/NAD+ and inhibitor of wild type (WT), Q167A, and H187A. The results revealed that the assembly and disassembly of C-site induced by presence of substrate/NAD+ and inhibitor, respectively. This assembly and disassembly was mainly due to the interaction between the substrate/NAD+ and inhibitor and F96 and the distance between F96 and H187 which are present at the neck of the C-site. MD simulations suggest that the conformational change of L3 plays a major role in assembly and disassembly of C-site. Our current results strongly suggest that the distinct conformational change of L3 as well as the assembly and disassembly of C-site plays an important role in SIRT2 deacetylation function. Our study unveiled the structural changes of SIRT2 in presence of NAD+ and inhibitor which should be helpful to improve the inhibitory potency of SIRT2.


PLOS ONE | 2013

An innovative strategy for dual inhibitor design and its application in dual inhibition of human thymidylate synthase and dihydrofolate reductase enzymes.

Mahreen Arooj; Sugunadevi Sakkiah; Guang Ping Cao; Keun Woo Lee

Due to the diligence of inherent redundancy and robustness in many biological networks and pathways, multitarget inhibitors present a new prospect in the pharmaceutical industry for treatment of complex diseases. Nevertheless, to design multitarget inhibitors is concurrently a great challenge for medicinal chemists. We have developed a novel computational approach by integrating the affinity predictions from structure-based virtual screening with dual ligand-based pharmacophore to discover potential dual inhibitors of human Thymidylate synthase (hTS) and human dihydrofolate reductase (hDHFR). These are the key enzymes in folate metabolic pathway that is necessary for the biosynthesis of RNA, DNA, and protein. Their inhibition has found clinical utility as antitumor, antimicrobial, and antiprotozoal agents. A druglike database was utilized to perform dual-target docking studies. Hits identified through docking experiments were mapped over a dual pharmacophore which was developed from experimentally known dual inhibitors of hTS and hDHFR. Pharmacophore mapping procedure helped us in eliminating the compounds which do not possess basic chemical features necessary for dual inhibition. Finally, three structurally diverse hit compounds that showed key interactions at both active sites, mapped well upon the dual pharmacophore, and exhibited lowest binding energies were regarded as possible dual inhibitors of hTS and hDHFR. Furthermore, optimization studies were performed for final dual hit compound and eight optimized dual hits demonstrating excellent binding features at target systems were also regarded as possible dual inhibitors of hTS and hDHFR. In general, the strategy used in the current study could be a promising computational approach and may be generally applicable to other dual target drug designs.


PLOS ONE | 2014

Binding Mode Analyses and Pharmacophore Model Development for Stilbene Derivatives as a Novel and Competitive Class of α-Glucosidase Inhibitors

Yuno Lee; Songmi Kim; Jun Young Kim; Mahreen Arooj; Siu Kim; Swan Hwang; Byeong-Woo Kim; Ki Hun Park; Keun Woo Lee

Stilbene urea derivatives as a novel and competitive class of non-glycosidic α-glucosidase inhibitors are effective for the treatment of type II diabetes and obesity. The main purposes of our molecular modeling study are to explore the most suitable binding poses of stilbene derivatives with analyzing the binding affinity differences and finally to develop a pharmacophore model which would represents critical features responsible for α-glucosidase inhibitory activity. Three-dimensional structure of S. cerevisiae α-glucosidase was built by homology modeling method and the structure was used for the molecular docking study to find out the initial binding mode of compound 12, which is the most highly active one. The initial structure was subjected to molecular dynamics (MD) simulations for protein structure adjustment at compound 12-bound state. Based on the adjusted conformation, the more reasonable binding modes of the stilbene urea derivatives were obtained from molecular docking and MD simulations. The binding mode of the derivatives was validated by correlation analysis between experimental Ki value and interaction energy. Our results revealed that the binding modes of the potent inhibitors were engaged with important hydrogen bond, hydrophobic, and π-interactions. With the validated compound 12-bound structure obtained from combining approach of docking and MD simulation, a proper four featured pharmacophore model was generated. It was also validated by comparison of fit values with the Ki values. Thus, these results will be helpful for understanding the relationship between binding mode and bioactivity and for designing better inhibitors from stilbene derivatives.


PLOS ONE | 2012

Molecular dynamics simulation study and hybrid pharmacophore model development in human LTA4H inhibitor design

Sundarapandian Thangapandian; Shalini John; Mahreen Arooj; Keun Woo Lee

Human leukotriene A4 hydrolase (hLTA4H) is a bi-functional enzyme catalyzes the hydrolase and aminopeptidase functions upon the fatty acid and peptide substrates, respectively, utilizing the same but overlapping binding site. Particularly the hydrolase function of this enzyme catalyzes the rate-limiting step of the leukotriene (LT) cascade that converts the LTA4 to LTB4. This product is a potent pro-inflammatory activator of inflammatory responses and thus blocking this conversion provides a valuable means to design anti-inflammatory agents. Four structurally very similar chemical compounds with highly different inhibitory profile towards the hydrolase function of hLTA4H were selected from the literature. Molecular dynamics (MD) simulations of the complexes of hLTA4H with these inhibitors were performed and the results have provided valuable information explaining the reasons for the differences in their biological activities. Binding mode analysis revealed that the additional thiophene moiety of most active inhibitor helps the pyrrolidine moiety to interact the most important R563 and K565 residues. The hLTA4H complexes with the most active compound and substrate were utilized in the development of hybrid pharmacophore models. These developed pharmacophore models were used in screening chemical databases in order to identify lead candidates to design potent hLTA4H inhibitors. Final evaluation based on molecular docking and electronic parameters has identified three compounds of diverse chemical scaffolds as potential leads to be used in novel and potent hLTA4H inhibitor design.


Chemical Biology & Drug Design | 2012

Computational Studies of Novel Chymase Inhibitors Against Cardiovascular and Allergic Diseases: Mechanism and Inhibition

Mahreen Arooj; Sundarapandian Thangapandian; Shalini John; Swan Hwang; Jong K. Park; Keun W. Lee

To provide a new idea for drug design, a computational investigation is performed on chymase and its novel 1,4‐diazepane‐2,5‐diones inhibitors that explores the crucial molecular features contributing to binding specificity. Molecular docking studies of inhibitors within the active site of chymase were carried out to rationalize the inhibitory properties of these compounds and understand their inhibition mechanism. The density functional theory method was used to optimize molecular structures with the subsequent analysis of highest occupied molecular orbital, lowest unoccupied molecular orbital, and molecular electrostatic potential maps, which revealed that negative potentials near 1,4‐diazepane‐2,5‐diones ring are essential for effective binding of inhibitors at active site of enzyme. The Bayesian model with receiver operating curve statistic of 0.82 also identified arylsulfonyl and aminocarbonyl as the molecular features favoring and not favoring inhibition of chymase, respectively. Moreover, genetic function approximation was applied to construct 3D quantitative structure–activity relationships models. Two models (genetic function approximation model 1 r2 = 0.812 and genetic function approximation model 2 r2 = 0.783) performed better in terms of correlation coefficients and cross‐validation analysis. In general, this study is used as example to illustrate how combinational use of 2D/3D quantitative structure–activity relationships modeling techniques, molecular docking, frontier molecular orbital density fields (highest occupied molecular orbital and lowest unoccupied molecular orbital), and molecular electrostatic potential analysis may be useful to gain an insight into the binding mechanism between enzyme and its inhibitors.


PLOS ONE | 2013

Molecular Modeling Study for Inhibition Mechanism of Human Chymase and Its Application in Inhibitor Design

Mahreen Arooj; Songmi Kim; Sugunadevi Sakkiah; Guang Ping Cao; Yuno Lee; Keun Woo Lee

Human chymase catalyzes the hydrolysis of peptide bonds. Three chymase inhibitors with very similar chemical structures but highly different inhibitory profiles towards the hydrolase function of chymase were selected with the aim of elucidating the origin of disparities in their biological activities. As a substrate (angiotensin-I) bound crystal structure is not available, molecular docking was performed to dock the substrate into the active site. Molecular dynamics simulations of chymase complexes with inhibitors and substrate were performed to calculate the binding orientation of inhibitors and substrate as well as to characterize conformational changes in the active site. The results elucidate details of the 3D chymase structure as well as the importance of K40 in hydrolase function. Binding mode analysis showed that substitution of a heavier Cl atom at the phenyl ring of most active inhibitor produced a great deal of variation in its orientation causing the phosphinate group to interact strongly with residue K40. Dynamics simulations revealed the conformational variation in region of V36-F41upon substrate and inhibitor binding induced a shift in the location of K40 thus changing its interactions with them. Chymase complexes with the most activecompound and substrate were used for development of a hybrid pharmacophore model which was applied in databases screening. Finally, hits which bound well at the active site, exhibited key interactions and favorable electronic properties were identified as possible inhibitors for chymase. This study not only elucidates inhibitory mechanism of chymase inhibitors but also provides key structural insights which will aid in the rational design of novel potent inhibitors of the enzyme. In general, the strategy applied in the current study could be a promising computational approach and may be generally applicable to drug design for other enzymes.

Collaboration


Dive into the Mahreen Arooj's collaboration.

Top Co-Authors

Avatar

Keun Woo Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Sugunadevi Sakkiah

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Shalini John

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Guang Ping Cao

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Jong Keun Park

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Songmi Kim

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Swan Hwang

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Yuno Lee

Gyeongsang National University

View shared research outputs
Top Co-Authors

Avatar

Byeong-Woo Kim

Gyeongsang National University

View shared research outputs
Researchain Logo
Decentralizing Knowledge