Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sugunadevi Sakkiah is active.

Publication


Featured researches published by Sugunadevi Sakkiah.


International Journal of Environmental Research and Public Health | 2016

Experimental Data Extraction and in Silico Prediction of the Estrogenic Activity of Renewable Replacements for Bisphenol A.

Huixiao Hong; Benjamin G. Harvey; Giuseppe R. Palmese; Joseph F. Stanzione; Hui Wen Ng; Sugunadevi Sakkiah; Weida Tong; Joshua M. Sadler

Bisphenol A (BPA) is a ubiquitous compound used in polymer manufacturing for a wide array of applications; however, increasing evidence has shown that BPA causes significant endocrine disruption and this has raised public concerns over safety and exposure limits. The use of renewable materials as polymer feedstocks provides an opportunity to develop replacement compounds for BPA that are sustainable and exhibit unique properties due to their diverse structures. As new bio-based materials are developed and tested, it is important to consider the impacts of both monomers and polymers on human health. Molecular docking simulations using the Estrogenic Activity Database in conjunction with the decision forest were performed as part of a two-tier in silico model to predict the activity of 29 bio-based platform chemicals in the estrogen receptor-α (ERα). Fifteen of the candidates were predicted as ER binders and fifteen as non-binders. Gaining insight into the estrogenic activity of the bio-based BPA replacements aids in the sustainable development of new polymeric materials.


International Journal of Environmental Research and Public Health | 2016

A Rat α-Fetoprotein Binding Activity Prediction Model to Facilitate Assessment of the Endocrine Disruption Potential of Environmental Chemicals.

Huixiao Hong; Jie Shen; Hui Wen Ng; Sugunadevi Sakkiah; Hao Ye; Weigong Ge; Ping Gong; Wenming Xiao; Weida Tong

Endocrine disruptors such as polychlorinated biphenyls (PCBs), diethylstilbestrol (DES) and dichlorodiphenyltrichloroethane (DDT) are agents that interfere with the endocrine system and cause adverse health effects. Huge public health concern about endocrine disruptors has arisen. One of the mechanisms of endocrine disruption is through binding of endocrine disruptors with the hormone receptors in the target cells. Entrance of endocrine disruptors into target cells is the precondition of endocrine disruption. The binding capability of a chemical with proteins in the blood affects its entrance into the target cells and, thus, is very informative for the assessment of potential endocrine disruption of chemicals. α-fetoprotein is one of the major serum proteins that binds to a variety of chemicals such as estrogens. To better facilitate assessment of endocrine disruption of environmental chemicals, we developed a model for α-fetoprotein binding activity prediction using the novel pattern recognition method (Decision Forest) and the molecular descriptors calculated from two-dimensional structures by Mold2 software. The predictive capability of the model has been evaluated through internal validation using 125 training chemicals (average balanced accuracy of 69%) and external validations using 22 chemicals (balanced accuracy of 71%). Prediction confidence analysis revealed the model performed much better at high prediction confidence. Our results indicate that the model is useful (when predictions are in high confidence) in endocrine disruption risk assessment of environmental chemicals though improvement by increasing number of training chemicals is needed.


Expert Opinion on Therapeutic Targets | 2016

Structures of androgen receptor bound with ligands: advancing understanding of biological functions and drug discovery

Sugunadevi Sakkiah; Hui Wen Ng; Weida Tong; Huixiao Hong

ABSTRACT Introduction: Androgen receptor (AR) is a ligand-dependent transcription factor and a member of the nuclear receptor superfamily. It plays a vital role in male sexual development and regulates gene expression in various tissues, including prostate. Androgens are compounds that exert their biological effects via interaction with AR. Binding of androgens to AR initiates conformational changes in AR that affect binding of co-regulator proteins and DNA. AR agonists and antagonists are widely used in a variety of clinical applications (i.e. hypogonadism and prostate cancer therapy). Areas covered: This review provides a close look at structures of AR-ligand complexes and mutations in the receptor that have been revealed, discusses current challenges in the field, and sheds light on future directions. Expert opinion: AR is one of the primary targets for the treatment of prostate cancer, as AR antagonists inhibit prostate cancer growth. However, these drugs are not effective for long-term treatment and lead to castration-resistant prostate cancer. The structures of AR-ligand complexes are an invaluable scientific asset that enhances our understanding of biological functions and mechanisms of androgenic and anti-androgenic chemicals as well as promotes the discovery of superior drug candidates.


Scientific Reports | 2016

sNebula, a network-based algorithm to predict binding between human leukocyte antigens and peptides

Heng Luo; Hao Ye; Hui Wen Ng; Sugunadevi Sakkiah; Donna L. Mendrick; Huixiao Hong

Understanding the binding between human leukocyte antigens (HLAs) and peptides is important to understand the functioning of the immune system. Since it is time-consuming and costly to measure the binding between large numbers of HLAs and peptides, computational methods including machine learning models and network approaches have been developed to predict HLA-peptide binding. However, there are several limitations for the existing methods. We developed a network-based algorithm called sNebula to address these limitations. We curated qualitative Class I HLA-peptide binding data and demonstrated the prediction performance of sNebula on this dataset using leave-one-out cross-validation and five-fold cross-validations. This algorithm can predict not only peptides of different lengths and different types of HLAs, but also the peptides or HLAs that have no existing binding data. We believe sNebula is an effective method to predict HLA-peptide binding and thus improve our understanding of the immune system.


International Journal of Environmental Research and Public Health | 2016

Consensus Modeling for Prediction of Estrogenic Activity of Ingredients Commonly Used in Sunscreen Products

Huixiao Hong; Diego Rua; Sugunadevi Sakkiah; Chandrabose Selvaraj; Weigong Ge; Weida Tong

Sunscreen products are predominantly regulated as over-the-counter (OTC) drugs by the US FDA. The “active” ingredients function as ultraviolet filters. Once a sunscreen product is generally recognized as safe and effective (GRASE) via an OTC drug review process, new formulations using these ingredients do not require FDA review and approval, however, the majority of ingredients have never been tested to uncover any potential endocrine activity and their ability to interact with the estrogen receptor (ER) is unknown, despite the fact that this is a very extensively studied target related to endocrine activity. Consequently, we have developed an in silico model to prioritize single ingredient estrogen receptor activity for use when actual animal data are inadequate, equivocal, or absent. It relies on consensus modeling to qualitatively and quantitatively predict ER binding activity. As proof of concept, the model was applied to ingredients commonly used in sunscreen products worldwide and a few reference chemicals. Of the 32 chemicals with unknown ER binding activity that were evaluated, seven were predicted to be active estrogenic compounds. Five of the seven were confirmed by the published data. Further experimental data is needed to confirm the other two predictions.


International Journal of Environmental Research and Public Health | 2016

Pathway Analysis Revealed Potential Diverse Health Impacts of Flavonoids that Bind Estrogen Receptors

Hao Ye; Hui Wen Ng; Sugunadevi Sakkiah; Weigong Ge; Roger Perkins; Weida Tong; Huixiao Hong

Flavonoids are frequently used as dietary supplements in the absence of research evidence regarding health benefits or toxicity. Furthermore, ingested doses could far exceed those received from diet in the course of normal living. Some flavonoids exhibit binding to estrogen receptors (ERs) with consequential vigilance by regulatory authorities at the U.S. EPA and FDA. Regulatory authorities must consider both beneficial claims and potential adverse effects, warranting the increases in research that has spanned almost two decades. Here, we report pathway enrichment of 14 targets from the Comparative Toxicogenomics Database (CTD) and the Herbal Ingredients’ Targets (HIT) database for 22 flavonoids that bind ERs. The selected flavonoids are confirmed ER binders from our earlier studies, and were here found in mainly involved in three types of biological processes, ER regulation, estrogen metabolism and synthesis, and apoptosis. Besides cancers, we conjecture that the flavonoids may affect several diseases via apoptosis pathways. Diseases such as amyotrophic lateral sclerosis, viral myocarditis and non-alcoholic fatty liver disease could be implicated. More generally, apoptosis processes may be importantly evolved biological functions of flavonoids that bind ERs and high dose ingestion of those flavonoids could adversely disrupt the cellular apoptosis process.


Oncotarget | 2017

Development of estrogen receptor beta binding prediction model using large sets of chemicals

Sugunadevi Sakkiah; Chandrabose Selvaraj; Ping Gong; Chaoyang Zhang; Weida Tong; Huixiao Hong

We developed an ERβ binding prediction model to facilitate identification of chemicals specifically bind ERβ or ERα together with our previously developed ERα binding model. Decision Forest was used to train ERβ binding prediction model based on a large set of compounds obtained from EADB. Model performance was estimated through 1000 iterations of 5-fold cross validations. Prediction confidence was analyzed using predictions from the cross validations. Informative chemical features for ERβ binding were identified through analysis of the frequency data of chemical descriptors used in the models in the 5-fold cross validations. 1000 permutations were conducted to assess the chance correlation. The average accuracy of 5-fold cross validations was 93.14% with a standard deviation of 0.64%. Prediction confidence analysis indicated that the higher the prediction confidence the more accurate the predictions. Permutation testing results revealed that the prediction model is unlikely generated by chance. Eighteen informative descriptors were identified to be important to ERβ binding prediction. Application of the prediction model to the data from ToxCast project yielded very high sensitivity of 90-92%. Our results demonstrated ERβ binding of chemicals could be accurately predicted using the developed model. Coupling with our previously developed ERα prediction model, this model could be expected to facilitate drug development through identification of chemicals that specifically bind ERβ or ERα.


International Journal of Environmental Research and Public Health | 2017

Endocrine Disrupting Chemicals Mediated through Binding Androgen Receptor Are Associated with Diabetes Mellitus

Sugunadevi Sakkiah; Tony Wang; Wen Zou; Yuping Wang; Bohu Pan; Weida Tong; Huixiao Hong

Endocrine disrupting chemicals (EDCs) can mimic natural hormone to interact with receptors in the endocrine system and thus disrupt the functions of the endocrine system, raising concerns on the public health. In addition to disruption of the endocrine system, some EDCs have been found associated with many diseases such as breast cancer, prostate cancer, infertility, asthma, stroke, Alzheimer’s disease, obesity, and diabetes mellitus. EDCs that binding androgen receptor have been reported associated with diabetes mellitus in in vitro, animal, and clinical studies. In this review, we summarize the structural basis and interactions between androgen receptor and EDCs as well as the associations of various types of diabetes mellitus with the EDCs mediated through androgen receptor binding. We also discuss the perspective research for further understanding the impact and mechanisms of EDCs on the risk of diabetes mellitus.


Oncotarget | 2018

Competitive docking model for prediction of the human nicotinic acetylcholine receptor α7 binding of tobacco constituents

Hui Wen Ng; Carmine Leggett; Sugunadevi Sakkiah; Bohu Pan; Hao Ye; Leihong Wu; Chandrabose Selvaraj; Weida Tong; Huixiao Hong

The detrimental health effects associated with tobacco use constitute a major public health concern. The addiction associated with nicotine found in tobacco products has led to difficulty in quitting among users. Nicotinic acetylcholine receptors (nAChRs) are the targets of nicotine and are responsible for addiction to tobacco products. However, it is unknown if the other >8000 tobacco constituents are addictive. Since it is time-consuming and costly to experimentally assess addictive potential of such larger number of chemicals, computationally predicting human nAChRs binding is important for in silico evaluation of addiction potential of tobacco constituents and needs structures of human nAChRs. Therefore, we constructed three-dimensional structures of the ligand binding domain of human nAChR α7 subtype and then developed a predictive model based on the constructed structures to predict human nAChR α7 binding activity of tobacco constituents. The predictive model correctly predicted 11 out of 12 test compounds to be binders of nAChR α7. The model is a useful tool for high-throughput screening of potential addictive tobacco constituents. These results could inform regulatory science research by providing a new validated predictive tool using cutting-edge computational methodology to high-throughput screen tobacco additives and constituents for their binding interaction with the human α7 nicotinic receptor. The tool represents a prediction model capable of screening thousands of chemicals found in tobacco products for addiction potential, which improves the understanding of the potential effects of additives.


Frontiers in Pharmacology | 2018

Structural Changes Due to Antagonist Binding in Ligand Binding Pocket of Androgen Receptor Elucidated Through Molecular Dynamics Simulations

Sugunadevi Sakkiah; Rebecca Kusko; Bohu Pan; Wenjing Guo; Weigong Ge; Weida Tong; Huixiao Hong

When a small molecule binds to the androgen receptor (AR), a conformational change can occur which impacts subsequent binding of co-regulator proteins and DNA. In order to accurately study this mechanism, the scientific community needs a crystal structure of the Wild type AR (WT-AR) ligand binding domain, bound with antagonist. To address this open need, we leveraged molecular docking and molecular dynamics (MD) simulations to construct a structure of the WT-AR ligand binding domain bound with antagonist bicalutamide. The structure of mutant AR (Mut-AR) bound with this same antagonist informed this study. After molecular docking analysis pinpointed the suitable binding orientation of a ligand in AR, the model was further optimized through 1 μs of MD simulations. Using this approach, three molecular systems were studied: (1) WT-AR bound with agonist R1881, (2) WT-AR bound with antagonist bicalutamide, and (3) Mut-AR bound with bicalutamide. Our structures were very similar to the experimentally determined structures of both WT-AR with R1881 and Mut-AR with bicalutamide, demonstrating the trustworthiness of this approach. In our model, when WT-AR is bound with bicalutamide, Val716/Lys720/Gln733, or Met734/Gln738/Glu897 move and thus disturb the positive and negative charge clumps of the AF2 site. This disruption of the AF2 site is key for understanding the impact of antagonist binding on subsequent co-regulator binding. In conclusion, the antagonist induced structural changes in WT-AR detailed in this study will enable further AR research and will facilitate AR targeting drug discovery.

Collaboration


Dive into the Sugunadevi Sakkiah's collaboration.

Top Co-Authors

Avatar

Huixiao Hong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weida Tong

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Hui Wen Ng

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Hao Ye

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Weigong Ge

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bohu Pan

Food and Drug Administration

View shared research outputs
Top Co-Authors

Avatar

Ping Gong

United States Department of Health and Human Services

View shared research outputs
Top Co-Authors

Avatar

Chaoyang Zhang

University of Southern Mississippi

View shared research outputs
Top Co-Authors

Avatar

Donna L. Mendrick

Food and Drug Administration

View shared research outputs
Researchain Logo
Decentralizing Knowledge