Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maia Tsikolia is active.

Publication


Featured researches published by Maia Tsikolia.


Proceedings of the National Academy of Sciences of the United States of America | 2008

Synthesis and bioassay of improved mosquito repellents predicted from chemical structure

Alan R. Katritzky; Zuoquan Wang; Svetoslav H. Slavov; Maia Tsikolia; Dimitar A. Dobchev; Novruz G. Akhmedov; C. Dennis Hall; Ulrich R. Bernier; Gary G. Clark; Kenneth J. Linthicum

Mosquito repellency data on acylpiperidines derived from the U.S. Department of Agriculture archives were modeled by using molecular descriptors calculated by CODESSA PRO software. An artificial neural network model was developed for the correlation of these archival results and used to predict the repellent activity of novel compounds of similar structures. A series of 34 promising N-acylpiperidine mosquito repellent candidates (4a–4q′) were synthesized by reactions of acylbenzotriazoles 2a–2p with piperidines 3a–3f. Compounds (4a–4q′) were screened as topically applied mosquito repellents by measuring the duration of repellency after application to cloth patches worn on the arms of human volunteers. Some compounds that were evaluated repelled mosquitoes as much as three times longer than N,N-diethyl-m-toluamide (DEET), the most widely used repellent throughout the world. The newly measured durations of repellency were used to obtain a superior correlation equation relating mosquito repellency to molecular structure.


Journal of Medical Entomology | 2010

Novel Carboxamides as Potential Mosquito Repellents

Alan R. Katritzky; Zuoquan Wang; Svetoslav H. Slavov; Dimitar A. Dobchev; C. Dennis Hall; Maia Tsikolia; Ulrich R. Bernier; Natasha M. Elejalde; Gary G. Clark; Kenneth J. Linthicum

ABSTRACT A model was developed using 167 carboxamide derivatives, from the United States Department of Agriculture archival database, that were tested as arthropod repellents over the past 60 yr. An artificial neural network employing CODESSA PRO descriptors was used to construct a quantitative structure-activity relationship model for prediction of novel mosquito repellents. By correlating the structure of these carboxamides with complete protection time, a measure of repellency based on duration, 34 carboxamides were predicted as candidate mosquito repellents. There were four additional compounds selected on the basis of their structural similarity to those predicted. The compounds were synthesized either by reaction of 1-acylbenzotriazoles with secondary amines or by reaction of acid chlorides with secondary amines in the presence of sodium hydride. The biological efficacy was assessed by duration of repellency on cloth at two dosages (25 and 2.5 µmol/cm2) and by the minimum effective dosage to prevent Aedes aegypti (L.) (Diptera: Culicidae) bites. One compound, (E)-N-cyclohexyl-N-ethyl-2-hexenamide, was superior to N,N-diethyl-3-methylbenzamide (deet) at both the high dosage (22 d versus 7 d for deet) and low dosage (5 d versus 2.5 d for deet). Only one of the carboxamides, hexahydro-1-(1-oxohexyl)-1H-azepine, had a minimum effective dosage that was equivalent or slightly better than that of deet (0.033 µmol/cm2 versus 0.047 µmol/cm2).


Journal of Medical Entomology | 2013

Biting Deterrence, Repellency, and Larvicidal Activity of Ruta chalepensis (Sapindales: Rutaceae) Essential Oil and Its Major Individual Constituents Against Mosquitoes

Abbas Ali; Betül Demirci; Hülya Tuba Kıyan; Ulrich R. Bernier; Maia Tsikolia; David E. Wedge; Ikhlas A. Khan; K. H.C. Baser; Nurhayat Tabanca

ABSTRACT The essential oil from aerial parts of Ruta chalepensis L. (Sapindales: Rutaceae) was obtained by hydrodistillation, and its chemical profile was identified using gas chromatography and gas chromatography-mass spectrometry. Compounds, 2-undecanone (43.2%), 2-nonanone (27.9%), and 2-nonyl acetate (10.6%) were the major constituents of the oil. Biting deterrent activity of R. chalepensis essential oil at 10 and 50 µg/cm2, 2-undecanone at 8.5 µg/cm2, 2-nonanone at 9 µg/cm2, and 2-nonyl acetate at 9.3 µg/cm2 was similar to DEET (N, N-diethyl-meta-toluamide) at 4.8 µg/cm2, against Aedes aegypti L. Biting deterrent activity of R. chalepensis oil at 50 µg/cm2 against Anopheles quadrimaculatus Say was statistically similar to DEET at 4.8 µg/cm2, whereas the activity was lower in the other compounds tested. In cloth patch assay, R. chalepensis essential oil was effective at 187 µg/cm2, whereas 2-undecanone was effective at 108.9 µg/cm2 against Ae. aegypti. In larval bioassays, 2-undecanone showed similar toxicity whereas toxicity of R. chalepensis essential oil and 2-nonanone was higher at 24-h posttreatment at the LD50 in An. quadrimaculatus than Ae. aegypti. This study revealed that R. chalepensis essential oil and its major compounds were active biting deterrents against Ae. aegypti at higher application rates whereas only the essential oil showed activity similar to DEET against An. quadrimaculatus. 2-undecanone was the most active compound in in vivo repellency bioassay against Ae. aegypti. Chemical composition of R. chalepensis essential oil varies because of plant production and harvest practices, and the activity level of the essential oil may depend on the source of the sample.


Molecules | 2013

Chemical Composition, Antifungal and Insecticidal Activities of Hedychium Essential Oils

Hamidou F. Sakhanokho; Blair J. Sampson; Nurhayat Tabanca; David E. Wedge; Betül Demirci; K. H.C. Baser; Ulrich R. Bernier; Maia Tsikolia; Natasha M. Agramonte; James J. Becnel; Jian Chen; Kanniah Rajasekaran; James M. Spiers

The antimicrobial properties of essential oils have been documented, and their use as “biocides” is gaining popularity. The aims of this study were to analyze the chemical composition and assess the biological activities of Hedychium essential oils. Oils from 19 Hedychium species and cultivars were analyzed by gas chromatography (GC) and gas chromatography-mass spectrometry (GC-MS) techniques. The antifungal and insecticidal activities of these oils were tested against Colletotrichum acutatum, C. fragariae, and C. gloeosporioides, and three insects, the azalea lace bug (Stephanitis pyrioides), the yellow fever mosquito (Aedes aegypti), and the red imported fire ant (Solenopsis invicta). Hedychium oils were rich in monoterpenes and sesquiterpenes, especially 1,8-cineole (0.1%–42%), linalool (<0.1%–56%), α-pinene (3%–17%), β-pinene (4%–31%), and (E)-nerolidol (0.1%–20%). Hedychium oils had no antifungal effect on C. gloeosporioides, C. fragariae, and C. acutatum, but most Hedychium oils effectively killed azalea lace bugs. The oils also show promise as an adult mosquito repellent, but they would make rather poor larvicides or adulticides for mosquito control. Hedychium oils acted either as a fire ant repellent or attractant, depending on plant genotype and oil concentration.


PLOS ONE | 2013

Promising Aedes aegypti Repellent Chemotypes Identified through Integrated QSAR, Virtual Screening, Synthesis, and Bioassay

Polina V. Oliferenko; Alexander A. Oliferenko; Gennadiy Poda; Dmitry I. Osolodkin; Girinath G. Pillai; Ulrich R. Bernier; Maia Tsikolia; Natasha M. Agramonte; Gary G. Clark; Kenneth J. Linthicum; Alan R. Katritzky

Molecular field topology analysis, scaffold hopping, and molecular docking were used as complementary computational tools for the design of repellents for Aedes aegypti, the insect vector for yellow fever, chikungunya, and dengue fever. A large number of analogues were evaluated by virtual screening with Glide molecular docking software. This produced several dozen hits that were either synthesized or procured from commercial sources. Analysis of these compounds by a repellent bioassay resulted in a few highly active chemicals (in terms of minimum effective dosage) as viable candidates for further hit-to-lead and lead optimization effort.


Organic and Biomolecular Chemistry | 2009

Synthesis and characterization of a redox-active ion channel supporting cation flux in lipid bilayers.

Maia Tsikolia; Adam C. Hall; Cristina Suarez; Zazi O. Nylander; Sarah M. Wardlaw; Molly E. Gibson; Kerry L. Valentine; Louisa N. Onyewadume; Deborah A. Ahove; Maya Woodbury; Margaret M. Mongare; C. Dennis Hall; Zuoquan Wang; Bogdan Draghici; Alan R. Katritzky

The synthesis, cation binding and transmembrane conductive properties of a novel synthetic ion channel containing a redox-active ferrocene unit are described. Fluorescence spectroscopy was used to demonstrate that the channel supports multiple ion coordination and association constants for 1:1 and 1:2 (channel:cation) coordination for both Na(+) and K(+) were evaluated. Experiments using a black lipid membrane preparation revealed that this compound functioned effectively as an ion channel for both Na(+) and K(+). Concomitant (23)Na NMR spectroscopy studies supported this finding and revealed a Na(+) flux, at least 5 times higher than ion transport rates by monensin. Furthermore, oxidation of the redox-active centre (Fe(2+) to Fe(3+)) effectively inhibited ion transport.


Pesticide Biochemistry and Physiology | 2013

Insecticidal, Repellent and Fungicidal Properties of Novel Trifluoromethylphenyl Amides

Maia Tsikolia; Ulrich R. Bernier; Monique R. Coy; Katelyn C. Chalaire; James J. Becnel; Natasha M. Agramonte; Nurhayat Tabanca; David E. Wedge; Gary G. Clark; Kenneth J. Linthicum; Daniel R. Swale; Jeffrey R. Bloomquist

Twenty trifluoromethylphenyl amides were synthesized and evaluated as fungicides and as mosquito toxicants and repellents. Against Aedes aegypti larvae, N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-3,5-dinitrobenzamide (1e) was the most toxic compound (24 h LC50 1940 nM), while against adults N-(2,6-dichloro-4-(trifluoromethyl)phenyl)-2,2,2-trifluoroacetamide (1c) was most active (24 h LD50 19.182 nM, 0.5 μL/insect). However, the 24 h LC50 and LD50 values of fipronil against Ae. aegypti larvae and adults were significantly lower: 13.55 nM and 0.787 × 10(-4) nM, respectively. Compound 1c was also active against Drosophila melanogaster adults with 24 h LC50 values of 5.6 and 4.9 μg/cm(2) for the Oregon-R and 1675 strains, respectively. Fipronil had LC50 values of 0.004 and 0.017 μg/cm(2) against the two strains of D. melanogaster, respectively. In repellency bioassays against female Ae. aegypti, 2,2,2-trifluoro-N-(2-(trifluoromethyl)phenyl)acetamide (4c) had the highest repellent potency with a minimum effective dosage (MED) of 0.039 μmol/cm(2) compared to DEET (MED of 0.091 μmol/cm(2)). Compound N-(2-(trifluoromethyl)phenyl)hexanamide (4a) had an MED of 0.091 μmol/cm(2) which was comparable to DEET. Compound 4c was the most potent fungicide against Phomopsis obscurans. Several trends were discerned between the structural configuration of these molecules and the effect of structural changes on toxicity and repellency. Para- or meta- trifluoromethylphenyl amides with an aromatic ring attached to the carbonyl carbon showed higher toxicity against Ae. aegypti larvae, than ortho- trifluoromethylphenyl amides. Ortho- trifluoromethylphenyl amides with trifluoromethyl or alkyl group attached to the carbonyl carbon produced higher repellent activity against female Ae. aegypti and Anopheles albimanus than meta- or para- trifluoromethylphenyl amides. The presence of 2,6-dichloro- substitution on the phenyl ring of the amide had an influence on larvicidal and repellent activity of para- trifluoromethylphenyl amides.


European Journal of Pharmacology | 2011

Cyclohexanol analogues are positive modulators of GABAA receptor currents and act as general anaesthetics in vivo

Adam C. Hall; Theanne N. Griffith; Maia Tsikolia; Francesca O. Kotey; Nikhila Gill; Danielle J. Humbert; Erin E. Watt; Yuliya A. Yermolina; Shikha Goel; Bahaa El-Ghendy; C. Dennis Hall

GABA(A) receptors meet all the pharmacological criteria required to be considered important general anaesthetic targets. In the following study, the modulatory effects of various commercially available and novel cyclohexanols were investigated on recombinant human γ-aminobutyric acid (GABA(A), α(1)β(2)γ(2s)) receptors expressed in Xenopus oocytes, and compared to the modulatory effects on GABA currents observed with exposures to the intravenous anaesthetic agent, propofol. Submaximal EC(20) GABA currents were typically enhanced by co-applications of 3-300 μM cyclohexanols. For instance, at 30 μM 2,6-diisopropylcyclohexanol (a novel compound) GABA responses were increased ~3-fold (although similar enhancements were achieved at 3 μM propofol). As regards rank order for modulation by the cyclohexanol analogues at 30 μM, the % enhancements for 2,6-dimethylcyclohexanol~2,6-diethylcyclohexanol~2,6-diisopropylcyclohexanol~2,6-di-sec-butylcyclohexanol ≫2,6-di-tert-butylcyclohexanol~4-tert-butylcyclohexanol>cyclohexanol~cyclopentanol~2-methylcyclohexanol. We further tested the potencies of the cyclohexanol analogues as general anaesthetics using a tadpole in vivo assay. Both 2,6-diisopropylcyclohexanol and 2,6-dimethylcyclohexanol were effective as anaesthetics with EC(50)s of 14.0 μM and 13.1 μM respectively, while other cyclohexanols with bulkier side chains were less potent. In conclusion, our data indicate that cyclohexanols are both positive modulators of GABA(A) receptors currents and anaesthetics. The positioning and size of the alkyl groups at the 2 and 6 positions on the cyclohexanol ring were critical determinants of activity.


International Journal of Environmental Research and Public Health | 2017

Mosquitocidal Activity and Mode of Action of the Isoxazoline Fluralaner

Shiyao Jiang; Maia Tsikolia; Ulrich R. Bernier; Jeffrey R. Bloomquist

Mosquitoes, such as Aedes aegypti and Anopheles gambiae, are important vectors of human diseases. Fluralaner, a recently introduced parasiticide, was evaluated as a mosquitocide in this study. On Ae. aegypti and An. gambiae fourth-instar larvae, fluralaner had 24-h LC50 (lethal concentration for 50% mortality) values of 1.8 ppb and 0.4 ppb, respectively. Following topical application to adult Ae. aegypti, fluralaner toxicity reached a plateau in about 3 days, with 1- and 3-day LD50 (lethal dose for 50% mortality) values of 1.3 ng/mg and 0.26 ng/mg, suggesting a slowly developing toxicity. Fipronil outperformed fluralaner by up to 100-fold in adult topical, glass contact, and feeding assays on Ae. aegypti. These data show that fluralaner does not have exceptional toxicity to mosquitoes in typical exposure paradigms. In electrophysiological recordings on Drosophila melanogaster larval central nervous system, the effectiveness of fluralaner for restoring nerve firing after gamma-aminobutyric acid (GABA) treatment, a measure of GABA antagonism, was similar in susceptible Oregon-R and cyclodiene-resistant rdl-1675 strains, with EC50 (half maximal effective concentration) values of 0.34 µM and 0.29 µM. Although this finding suggests low cross resistance in the presence of rdl, the moderate potency, low contact activity, and slow action of fluralaner argue against its use as an adult mosquitocide for vector control.


Pest Management Science | 2018

Vapor toxicity of five volatile pyrethroids against Aedes aegypti, Aedes albopictus, Culex quinquefasciatus, and Anopheles quadrimaculatus (Diptera: Culicidae): Spatial repellent toxicity against mosquito vectors

Christopher S. Bibbs; Maia Tsikolia; Jeffrey R. Bloomquist; Ulrich R. Bernier; Rui-De Xue; Phillip E. Kaufman

BACKGROUND Mosquito mortality has been documented in numerous studies of spatial repellents but the concentration-dependent toxicity of spatial repellent vapors has not been documented. To address this issue, prallethrin, flumethrin, metofluthrin, transfluthrin, and meperfluthrin were selected for comparative study against Aedes albopictus (Skuse), Ae. aegypti (L.), Culex quinquefasciatus Say, and Anopheles quadrimaculatus Say. Mosquito were exposed to vapors of each chemical for 2, 4, and 24 h with mortality recorded at each time point. A second experiment involved exposing mosquitoes to vapors for 2 h, then transferring them to untreated holding containers and held for 24 h. For these mosquitoes, readings were only taken after 24 h to allow for metabolic detoxification and recovery. RESULTS LC50 and LC90 data indicated that transfluthrin and meperfluthrin had the greatest toxicity across all species, followed by metofluthrin, prallethrin, and flumethrin. CONCLUSION Our findings, through the direct comparison of these compounds, suggest that transfluthrin, meperfluthrin, and metofluthrin be considered for further development. The vapor toxicity for the aforementioned compounds significantly exceeds prallethrin, which is currently market available as an adulticidal active ingredient in public health pest control.

Collaboration


Dive into the Maia Tsikolia's collaboration.

Top Co-Authors

Avatar

Ulrich R. Bernier

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Kenneth J. Linthicum

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

Natasha M. Agramonte

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar

Nurhayat Tabanca

Agricultural Research Service

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Gary G. Clark

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David E. Wedge

United States Department of Agriculture

View shared research outputs
Top Co-Authors

Avatar

James J. Becnel

Agricultural Research Service

View shared research outputs
Researchain Logo
Decentralizing Knowledge