Maite Pijuan
Catalan Institute for Water Research
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Maite Pijuan.
Water Research | 2013
A. Rodriguez-Caballero; Maite Pijuan
A sequencing batch reactor (SBR) was enriched with ammonia oxidizing bacteria (AOB) in order to treat synthetic reject wastewater (1 g NH4+ N/L). Partial nitrification was successfully achieved at a NH4+ -N to NO2- -N conversion rate of 98%. The emission dynamics of nitrous oxide (N2O) and nitric oxide (NO) were monitored during normal operation and under 3 different cycle configurations. An N2O peak was detected during the first 5 min of the cycle in all cases which corresponded to 60-80% of the total N2O emitted. When anoxic phases were introduced, N2O emissions were minimized but NO increased. Factors affecting the initial N2O peak were studied in a set of individual experiments. It was concluded that most of this N2O originated during settling due to biological reactions. Complete oxidation of NH4+ (or most likely hydroxylamine) as a result of sufficient aeration time can be a minimization strategy for N2O emissions in partial nitrification systems.
Science of The Total Environment | 2014
A. Rodriguez-Caballero; I. Aymerich; Manel Poch; Maite Pijuan
In this study, methane (CH4) and nitrous oxide (N2O) emission dynamics of a plug-flow bioreactor located in a municipal full-scale wastewater treatment plant were monitored during a period of 10 weeks. In general, CH4 and N2O gas emissions from the bioreactor accounted for 0.016% of the influent chemical oxygen demand (COD) and 0.116% of the influent total Kjeldahl nitrogen (TKN) respectively. In order to identify the emission patterns in the different zones, the bioreactor was divided in six different sampling sites and the gas collection hood was placed for a period of 2-3 days in each of these sites. This sampling strategy also allowed the identification of different process perturbations leading to CH4 or N2O peak emissions. CH4 emissions mainly occurred in the first aerated site, and were mostly related with the influent and reject wastewater flows entering the bioreactor. On the other hand, N2O emissions were given along all the aerated parts of the bioreactor and were strongly dependant on the occurrence of process disturbances such as periods of no aeration or nitrification instability. Dissolved CH4 and N2O concentrations were monitored in the bioreactor and in other parts of the plant, as a contribution for the better understanding of the transport of these greenhouse gases across the different stages of the treatment system.
Bioresource Technology | 2013
A. Rodriguez-Caballero; A. Ribera; José Luis Balcázar; Maite Pijuan
The processes of nitritation and full nitrification of synthetic reject wastewater were compared in terms of N2O and NO emissions. Two lab-scale sequencing batch reactors (SBR1 and SBR2) were enriched with Nitrosomonas (ammonia-oxidizing bacteria) and Nitrobacter (nitrite-oxidizing bacteria), as shown by fluorescence in situ hybridization (FISH) and high-resolution 16S rRNA tag pyrosequencing. Stable conversion of ammonium to nitrite and nitrite to nitrate was achieved in SBR1 and SBR2 respectively. Biomass from SBR2 was added in SBR1 in order to achieve full nitrification. Under nitritation, 1.22% of the converted-N was emitted as N2O, and 0.066% as NO. During the transition from nitritation to full nitrification, effluent nitrite concentrations decreased but nitrogen oxides were emitted at levels similar to the nitritation period. Gas emissions decreased sharply under full nitrification conditions (0.54% N2O-N/converted-N; 0.021% NO-N/converted-N), probably as a result of the combined effect of lower nitrite and ammonium concentrations in the bioreactor.
Bioresource Technology | 2016
S. Zahedi; P. Icaran; Zhiguo Yuan; Maite Pijuan
Free nitrous acid (FNA) has been shown to enhance the biodegradability of waste activated sludge (WAS) but its effectiveness on the pre-treatment of mixed sludge is not known. This study explores the effectiveness of four different FNA concentrations (0, 2.49, 3.55, 4.62mgN-HNO2/L) and three exposure times (2, 5, 9h) lower than the ones reported in literature (24h) on WAS characteristics and specific methane production (SMP). FNA pre-treatment reduced sludge cell viability below 10% in all cases after an exposure time of 5h, increasing the solubility of the organic matter. The treated mixed sludge was used as substrate for the biochemical methane production tests to assess its SMP. Results showed a significant increase (up to 25%) on SMP when the sludge was pretreated with the lowest FNA concentration (2.49mgN-HNO2/L) during 2 and 5h but did not show any improvement at longer exposure times or higher FNA concentrations.
Bioresource Technology | 2017
S. Zahedi; P. Icaran; Zhiguo Yuan; Maite Pijuan
The present study was undertaken to investigate the effect of different free nitrous acid (FNA) concentrations at low pre-treatment times (PTs) (1, 2 and 5h) and without pH control with mild agitation on primary sludge (PS) biodegradability and methane production (MP). Increasing PTs resulted in an increase in the solubility of the organic matter (around 25%), but not on cell-mortality (>75% in all the cases with FNA) and neither on methane generation. FNA pre-treatment at low PTs improve MP (around 16% at PT of 1h and 650mg N-NO2-/L). However, a similar improvement was found with mild agitation of PS without FNA at 2 and 5h. Taking into account the potential costs associated with the FNA pre-treatment, a mild agitation without FNA would be preferred to enhance MP in PS.
Bioresource Technology | 2016
Anna Ribera-Guardia; Ricardo Marques; Corrado Arangio; Mónica Carvalheira; Adrian Oehmen; Maite Pijuan
This study aims at investigating the denitrification kinetics in two separate enriched cultures of denitrifying polyphosphate accumulating organisms (dPAO) and denitrifying glycogen accumulating organisms (dGAO) and compare their N2O accumulation potential under different conditions. Two sequencing batch reactors were inoculated to develop dPAO and dGAO enriched microbial communities separately. Seven batch tests with different combinations of electron acceptors (nitrate, nitrite and/or nitrous oxide) were carried out with the enriched biomass from both reactors. Results indicate that in almost all batch tests, N2O accumulated for both cultures, however dPAOs showed a higher denitrification capacity compared to dGAOs due to their higher nitrogen oxides reduction rates. Additionally, the effect of the simultaneous presence of several electron acceptors in the reduction rates of the different nitrogen oxides was also assessed in dPAOs and dGAOs.
Science of The Total Environment | 2017
Olga Auguet; Maite Pijuan; Carles M. Borrego; Sara Rodriguez-Mozaz; Xavier Triadó-Margarit; Saulo Varela Della Giustina; Oriol Gutierrez
Wastewater transport along sewers favors the colonization of inner pipe surfaces by wastewater-derived microorganisms that grow forming biofilms. These biofilms are composed of rich and diverse microbial communities that are continuously exposed to antibiotic residues and antibiotic resistant bacteria (ARB) from urban wastewater. Sewer biofilms thus appear as an optimal habitat for the dispersal and accumulation of antibiotic resistance genes (ARGs). In this study, the concentration of antibiotics, integron (intI1) and antibiotic resistance genes (qnrS, sul1, sul2, blaTEM, blaKPC, ermB, tetM and tetW), and potential bacterial pathogens were analyzed in wastewater and biofilm samples collected at the inlet and outlet sections of a pressurized sewer pipe. The most abundant ARGs detected in both wastewater and biofilm samples were sul1 and sul2 with roughly 1 resistance gene for each 10 copies of 16s RNA gene. Significant differences in the relative abundance of gene intI1 and genes conferring resistance to fluoroquinolones (qnrS), sulfonamides (sul1 and sul2) and betalactams (blaTEM) were only measured between inlet and outlet biofilm samples. Composition of bacterial communities also showed spatial differences in biofilms and a higher prevalence of Operational Taxonomic Units (OTUs) with high sequence identity (>98%) to well-known human pathogens was observed in biofilms collected at the inlet pipe section. Our study highlights the role of sewer biofilms as source and sink of ARB and ARGs and supports the idea that community composition rather than antibiotic concentration is the main factor driving the diversity of the sewage resistome.
Applied and Environmental Microbiology | 2015
Olga Auguet; Maite Pijuan; J. Batista; Carles M. Borrego; Oriol Gutierrez
ABSTRACT The coexistence of sulfate-reducing bacteria (SRB) and methanogenic archaea (MA) in anaerobic biofilms developed in sewer inner pipe surfaces favors the accumulation of sulfide (H2S) and methane (CH4) as metabolic end products, causing severe impacts on sewerage systems. In this study, we investigated the time course of H2S and CH4 production and emission rates during different stages of biofilm development in relation to changes in the composition of microbial biofilm communities. The study was carried out in a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer using a combination of process data and molecular techniques (e.g., quantitative PCR [qPCR], denaturing gradient gel electrophoresis [DGGE], and 16S rRNA gene pyrotag sequencing). After 2 weeks of biofilm growth, H2S emission was notably high (290.7 ± 72.3 mg S-H2S liter−1 day−1), whereas emissions of CH4 remained low (17.9 ± 15.9 mg COD-CH4 liter−1 day−1). This contrasting trend coincided with a stable SRB community and an archaeal community composed solely of methanogens derived from the human gut (i.e., Methanobrevibacter and Methanosphaera). In turn, CH4 emissions increased after 1 year of biofilm growth (327.6 ± 16.6 mg COD-CH4 liter−1 day−1), coinciding with the replacement of methanogenic colonizers by species more adapted to sewer conditions (i.e., Methanosaeta spp.). Our study provides data that confirm the capacity of our laboratory experimental system to mimic the functioning of full-scale sewers both microbiologically and operationally in terms of sulfide and methane production, gaining insight into the complex dynamics of key microbial groups during biofilm development.
Science of The Total Environment | 2016
Olga Auguet; Maite Pijuan; Carles M. Borrego; Oriol Gutierrez
Bioproduction of hydrogen sulfide (H2S) and methane (CH4) under anaerobic conditions in sewer pipes causes detrimental effects on both sewer facilities and surrounding environment. Among the strategies used to mitigate the production of both compounds, the addition of nitrite (NO2(-)) has shown a greater long-term inhibitory effect compared with other oxidants such as nitrate or oxygen. The aim of this study was to determine the effectiveness of a new method, the Downstream Nitrite Dosage strategy (DNO2D), to control H2S and CH4 emissions in sewers. Treatment effectiveness was assessed on H2S and CH4 abatement on the effluent of a laboratory sewer pilot plant that mimics a full-scale anaerobic rising sewer. The experiment was divided in three different periods: system setup (period 1), nitrite addition (period 2) and system recovery (period 3). Different process and molecular methods were combined to investigate the impact of NO2(-) addition on H2S and CH4 production. Results showed that H2S load was reduced completely during nitrite addition when compared to period 1 due to H2S oxidation but increased immediately after nitrite addition stopped. The H2S overproduction during recovery period was associated with the bacterial reduction of different sulfur species (elemental sulfur/thiosulfate/sulfite) accumulated within the sewer biofilm matrix. Oxidation of CH4 was also detected during period 2 but, contrary to sulfide production, re-establishment of methanogenesis was not immediate after stopping nitrite dosing. The analysis of bulk and active microbial communities along experimental treatment showed compositional changes that agreed with the observed dynamics of chemical processes. Results of this study show that DNO2D strategy could significantly reduce H2S and CH4 emissions from sewers during the addition period but also suggest that microbial agents involved in such processes show a high resilience towards chemical stressors, thus favoring the re-establishment of H2S and CH4 production after stopping nitrite addition.
Science of The Total Environment | 2018
Elissavet Kassotaki; Maite Pijuan; Adriano Joss; Carles M. Borrego; Ignasi Rodríguez-Roda; Gianluigi Buttiglieri
In the past few years, anaerobic ammonium oxidation-based processes have attracted a lot of attention for their implementation at the mainstream line of wastewater treatment plants, due to the possibility of leading to energy autarky if combined with anaerobic digestion. However, little is known about the potential degradation of micropollutants by the microbial groups responsible of these processes and the few results available are inconclusive. This study aimed to assess the degradation capability of biomass withdrawn from a combined nitritation/anaerobic ammonium oxidation (combined N/A) pilot plant towards five pharmaceutically active compounds (ibuprofen, sulfamethoxazole, metoprolol, venlafaxine and carbamazepine). Batch experiments were performed under different conditions by selectively activating or inhibiting different microbial groups: i) regular combined N/A operation, ii) aerobic (optimal for nitrifying bacteria), iii) aerobic with allylthiourea (an inhibitor of ammonia monooxygenase, enzyme of ammonia oxidizing bacteria), iv) anoxic (optimal for anaerobic ammonium oxidizing bacteria), v) aerobic with acetate (optimal for heterotrophic bacteria) and vi) anoxic with acetate (optimal for heterotrophic denitrifying bacteria). Ibuprofen was the most biodegradable compound being significantly degraded (49-100%) under any condition except heterotrophic denitrification. Sulfamethoxazole, exhibited the highest removal (70%) under optimal conditions for nitrifying bacteria but in the rest of the experiments anoxic conditions were found to be slightly more favorable (up to 58%). For metoprolol the highest performance was obtained under anoxic conditions favoring anammox bacteria (62%). Finally, carbamazepine and venlafaxine were hardly removed (≤10% in the majority of cases). Taken together, these results suggest the specificity of different microbial groups that in combination with alternating operational parameters can lead to enhanced removal of some micropollutants.