Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Philip D. Dunne is active.

Publication


Featured researches published by Philip D. Dunne.


Clinical Cancer Research | 2014

AXL Is a Key Regulator of Inherent and Chemotherapy-Induced Invasion and Predicts a Poor Clinical Outcome in Early-Stage Colon Cancer

Philip D. Dunne; Darragh G. McArt; Jaine K. Blayney; Murugan Kalimutho; Samanda Greer; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Maurice B. Loughrey; Keara Redmond; Daniel B. Longley; Manuel Salto-Tellez; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: Despite the use of 5-fluorouracil (5-FU)–based adjuvant treatments, a large proportion of patients with high-risk stage II/III colorectal cancer will relapse. Thus, novel therapeutic strategies are needed for early-stage colorectal cancer. Residual micrometastatic disease from the primary tumor is a major cause of patient relapse. Experimental Design: To model colorectal cancer tumor cell invasion/metastasis, we have generated invasive (KRASMT/KRASWT/+chr3/p53-null) colorectal cancer cell subpopulations. Receptor tyrosine kinase (RTK) screens were used to identify novel proteins that underpin the migratory/invasive phenotype. Migration/invasion was assessed using the XCELLigence system. Tumors from patients with early-stage colorectal cancer (N = 336) were examined for AXL expression. Results: Invasive colorectal cancer cell subpopulations showed a transition from an epithelial-to-mesenchymal like phenotype with significant increases in migration, invasion, colony-forming ability, and an attenuation of EGF receptor (EGFR)/HER2 autocrine signaling. RTK arrays showed significant increases in AXL levels in all invasive sublines. Importantly, 5-FU treatment resulted in significantly increased migration and invasion, and targeting AXL using pharmacologic inhibition or RNA interference (RNAi) approaches suppressed basal and 5-FU–induced migration and invasion. Significantly, high AXL mRNA and protein expression were found to be associated with poor overall survival in early-stage colorectal cancer tissues. Conclusions: We have identified AXL as a poor prognostic marker and important mediator of cell migration/invasiveness in colorectal cancer. These findings provide support for the further investigation of AXL as a novel prognostic biomarker and therapeutic target in colorectal cancer, in particular in the adjuvant disease in which EGFR/VEGF–targeted therapies have failed. Clin Cancer Res; 20(1); 164–75. ©2013 AACR.


Human Molecular Genetics | 2011

DNMT1 deficiency triggers mismatch repair defects in human cells through depletion of repair protein levels in a process involving the DNA damage response

J. Loughery; Philip D. Dunne; Karla O'Neill; Richard R. Meehan; Jennifer McDaid; Colum P. Walsh

DNA methyltransferase 1 (DNMT1) maintains methylation at CpG dinucleotides, important for transcriptional silencing at many loci. It is also implicated in stabilizing repeat sequences: DNMT1 deficiency causes microsatellite instability in mouse embryonic stem cells, but it is unclear how this occurs, how repeats lacking CpG become unstable and whether the effect is confined to stem cells. To address these questions, we transfected hTERT-immortalized normal human fibroblasts (hTERT-1604) with a short hairpin RNA construct targeting DNMT1 and isolated stable integrants with different levels of protein. DNMT1 expression levels agreed well with methylation levels at imprinted genes. Knockdown cells showed two key characteristics of mismatch repair (MMR) deficiency, namely resistance to the drug 6-thioguanine and up to 10-fold elevated mutation rates at a CA(17) microsatellite reporter, but had limited viability. The likely cause of MMR defects is a matching drop in steady-state protein levels for key repair components in DNMT1 knockdown cells, affecting both the MutLα and MutSα complexes. This indirect effect on MMR proteins was also seen using a different targeting method in HT29 colon cancer cells and did not involve transcriptional silencing of the respective genes. Decreased levels of MMR components follow activation of the DNA damage response and blocking this response, and in particular poly(ADP-ribose) polymerase (PARP) overactivation, rescues cell viability in DNMT1-depleted cells. These results offer an explanation for how and why unmethylated microsatellite repeats can be destabilized in cells with decreased DNMT1 levels and uncover a novel and important role for PARP in this process.


Clinical Cancer Research | 2016

Challenging the cancer molecular stratification dogma: Intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer

Philip D. Dunne; Darragh G. McArt; Conor Bradley; Paul O'Reilly; Barrett Hl; Robert Cummins; O'Grady T; Kenneth Arthur; Maurice B. Loughrey; Wendy L. Allen; Simon S. McDade; David Waugh; Peter Hamilton; Daniel B. Longley; Elaine Kay; Patrick G. Johnston; Mark Lawler; Manuel Salto-Tellez; Van Schaeybroeck S

Purpose: A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. Experimental Design: We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. Results: We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286–9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial–mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. Conclusions: Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095–104. ©2016 AACR. See related commentary by Morris and Kopetz, p. 3989


Cell Death and Disease | 2014

Fibroblast growth factor receptor 4 (FGFR4): a targetable regulator of drug resistance in colorectal cancer

Richard Turkington; Daniel B. Longley; Wendy L. Allen; Leanne Stevenson; Kirsty M. McLaughlin; Philip D. Dunne; Jaine K. Blayney; Manuel Salto-Tellez; S Van Schaeybroeck; Patrick G. Johnston

The discovery of underlying mechanisms of drug resistance, and the development of novel agents to target these pathways, is a priority for patients with advanced colorectal cancer (CRC). We previously undertook a systems biology approach to design a functional genomic screen and identified fibroblast growth factor receptor 4 (FGFR4) as a potential mediator of drug resistance. The aim of this study was to examine the role of FGFR4 in drug resistance using RNAi and the small-molecule inhibitor BGJ398 (Novartis). We found that FGFR4 is highly expressed at the RNA and protein levels in colon cancer tumour tissue compared with normal colonic mucosa and other tumours. Silencing of FGFR4 reduced cell viability in a panel of colon cancer cell lines and increased caspase-dependent apoptosis. A synergistic interaction was also observed between FGFR4 silencing and 5-fluorouracil (5-FU) and oxaliplatin chemotherapy in colon cancer cell lines. Mechanistically, FGFR4 silencing decreased activity of the pro-survival STAT3 transcription factor and expression of the anti-apoptotic protein c-FLIP. Furthermore, silencing of STAT3 resulted in downregulation of c-FLIP protein expression, suggesting that FGFR4 may regulate c-FLIP expression via STAT3. A similar phenotype and downstream pathway changes were observed following FGFR4 silencing in cell lines resistant to 5-FU, oxaliplatin and SN38 and upon exposure of parental cells to the FGFR small-molecule inhibitor BGJ398. Our results indicate that FGFR4 is a targetable regulator of chemo-resistance in CRC, and hence inhibiting FGFR4 in combination with 5-FU and oxaliplatin is a potential therapeutic strategy for this disease.


Scientific Reports | 2017

QuPath: Open source software for digital pathology image analysis

Peter Bankhead; Maurice B. Loughrey; José Antonio Fiz Fernández; Yvonne Dombrowski; Darragh G. McArt; Philip D. Dunne; Stephen McQuaid; Ronan T. Gray; Liam Murray; Helen G. Coleman; Jacqueline James; Manuel Salto-Tellez; Peter Hamilton

QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.


Clinical Cancer Research | 2016

EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer.

Philip D. Dunne; Sonali Dasgupta; Jaine K. Blayney; Darragh G. McArt; Keara Redmond; Jessica-Anne Weir; Conor Bradley; Takehiko Sasazuki; Senji Shirasawa; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Manuel Salto-Tellez; Richard Wilson; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear. Experimental Design: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models. Results: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells. Conclusions: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230–42. ©2015 AACR.


BMC Bioinformatics | 2013

cudaMap: a GPU accelerated program for gene expression connectivity mapping

Darragh G. McArt; Peter Bankhead; Philip D. Dunne; Manuel Salto-Tellez; Peter Hamilton; Shu-Dong Zhang

BackgroundModern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.ResultscudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.ConclusionEmerging ‘omics’ technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.


British Journal of Cancer | 2009

MLH1 mediates PARP-dependent cell death in response to the methylating agent N -methyl- N -nitrosourea

J. R. McDaid; J. Loughery; Philip D. Dunne; J. C. Boyer; C. S. Downes; R. A. Farber; C. P. Walsh

Background:Methylating agents such as N-methyl-N-nitrosourea (MNU) can cause cell cycle arrest and death either via caspase-dependent apoptosis or via a poly(ADP-ribose) polymerase (PARP)-dependent form of apoptosis. We wished to investigate the possible role of MLH1 in signalling cell death through PARP.Methods:Fibroblasts are particularly dependent on a PARP-mediated cell death response to methylating agents. We used hTERT-immortalised normal human fibroblasts (WT) to generate isogenic MLH1-depleted cells, confirmed by quantitative PCR and western blotting. Drug resistance was measured by clonogenic and cell viability assays and effects on the cell cycle by cell sorting. Damage signalling was additionally investigated using immunostaining.Results:MLH1-depleted cells were more resistant to MNU, as expected. Despite having an intact G2/M checkpoint, the WT cells did not initially undergo cell cycle arrest but instead triggered cell death directly by PARP overactivation and nuclear translocation of apoptosis-inducing factor (AIF). The MLH1-depleted cells showed defects in this pathway, with decreased staining for phosphorylated H2AX, altered PARP activity and reduced AIF translocation. Inhibitors of PARP, but not of caspases, blocked AIF translocation and greatly decreased short-term cell death in both WT and MLH1-depleted cells. This MLH1-dependent response to MNU was not blocked by inhibitors of ATM/ATR or p53.Conclusion:These novel data indicate an important role for MLH1 in signalling PARP-dependent cell death in response to the methylating agent MNU.


PLOS ONE | 2013

Connectivity Mapping for Candidate Therapeutics Identification Using Next Generation Sequencing RNA-Seq Data

Darragh G. McArt; Philip D. Dunne; Jaine K. Blayney; Manuel Salto-Tellez; Sandra Van Schaeybroeck; Peter Hamilton; Shu-Dong Zhang

The advent of next generation sequencing technologies (NGS) has expanded the area of genomic research, offering high coverage and increased sensitivity over older microarray platforms. Although the current cost of next generation sequencing is still exceeding that of microarray approaches, the rapid advances in NGS will likely make it the platform of choice for future research in differential gene expression. Connectivity mapping is a procedure for examining the connections among diseases, genes and drugs by differential gene expression initially based on microarray technology, with which a large collection of compound-induced reference gene expression profiles have been accumulated. In this work, we aim to test the feasibility of incorporating NGS RNA-Seq data into the current connectivity mapping framework by utilizing the microarray based reference profiles and the construction of a differentially expressed gene signature from a NGS dataset. This would allow for the establishment of connections between the NGS gene signature and those microarray reference profiles, alleviating the associated incurring cost of re-creating drug profiles with NGS technology. We examined the connectivity mapping approach on a publicly available NGS dataset with androgen stimulation of LNCaP cells in order to extract candidate compounds that could inhibit the proliferative phenotype of LNCaP cells and to elucidate their potential in a laboratory setting. In addition, we also analyzed an independent microarray dataset of similar experimental settings. We found a high level of concordance between the top compounds identified using the gene signatures from the two datasets. The nicotine derivative cotinine was returned as the top candidate among the overlapping compounds with potential to suppress this proliferative phenotype. Subsequent lab experiments validated this connectivity mapping hit, showing that cotinine inhibits cell proliferation in an androgen dependent manner. Thus the results in this study suggest a promising prospect of integrating NGS data with connectivity mapping.


Histopathology | 2017

Back to the future: routine morphological assessment of the tumour microenvironment is prognostic in stage II/III colon cancer in a large population-based study

Seán O Hynes; Helen G. Coleman; Paul J. Kelly; Steven Irwin; Roisin F O'Neill; Ronan T. Gray; Claire McGready; Philip D. Dunne; Stephen McQuaid; Jacqueline James; Manuel Salto-Tellez; Maurice B. Loughrey

Both morphological and molecular approaches have highlighted the biological and prognostic importance of the tumour microenvironment in colorectal cancer (CRC). Despite this, microscopic assessment of the tumour microenvironment has not been adopted into routine practice. The study aim was to identify those tumour microenvironmental features that are most likely to provide prognostic information and be feasible to use in routine pathology reporting practice.

Collaboration


Dive into the Philip D. Dunne's collaboration.

Top Co-Authors

Avatar

Darragh G. McArt

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Mark Lawler

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Daniel B. Longley

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Maurice B. Loughrey

Belfast Health and Social Care Trust

View shared research outputs
Top Co-Authors

Avatar

Peter Hamilton

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Aideen Roddy

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Helen G. Coleman

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge