Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Darragh G. McArt is active.

Publication


Featured researches published by Darragh G. McArt.


PLOS ONE | 2013

Validation of Next Generation Sequencing Technologies in Comparison to Current Diagnostic Gold Standards for BRAF, EGFR and KRAS Mutational Analysis

Clare McCourt; Darragh G. McArt; Ken I. Mills; Mark A. Catherwood; Perry Maxwell; David Waugh; Peter Hamilton; Joe M. O'Sullivan; Manuel Salto-Tellez

Next Generation Sequencing (NGS) has the potential of becoming an important tool in clinical diagnosis and therapeutic decision-making in oncology owing to its enhanced sensitivity in DNA mutation detection, fast-turnaround of samples in comparison to current gold standard methods and the potential to sequence a large number of cancer-driving genes at the one time. We aim to test the diagnostic accuracy of current NGS technology in the analysis of mutations that represent current standard-of-care, and its reliability to generate concomitant information on other key genes in human oncogenesis. Thirteen clinical samples (8 lung adenocarcinomas, 3 colon carcinomas and 2 malignant melanomas) already genotyped for EGFR, KRAS and BRAF mutations by current standard-of-care methods (Sanger Sequencing and q-PCR), were analysed for detection of mutations in the same three genes using two NGS platforms and an additional 43 genes with one of these platforms. The results were analysed using closed platform-specific proprietary bioinformatics software as well as open third party applications. Our results indicate that the existing format of the NGS technology performed well in detecting the clinically relevant mutations stated above but may not be reliable for a broader unsupervised analysis of the wider genome in its current design. Our study represents a diagnostically lead validation of the major strengths and weaknesses of this technology before consideration for diagnostic use.


Methods | 2014

Digital pathology and image analysis in tissue biomarker research.

Peter Hamilton; Peter Bankhead; Yinhai Wang; Ryan Hutchinson; Declan Kieran; Darragh G. McArt; Jacqueline James; Manuel Salto-Tellez

Digital pathology and the adoption of image analysis have grown rapidly in the last few years. This is largely due to the implementation of whole slide scanning, advances in software and computer processing capacity and the increasing importance of tissue-based research for biomarker discovery and stratified medicine. This review sets out the key application areas for digital pathology and image analysis, with a particular focus on research and biomarker discovery. A variety of image analysis applications are reviewed including nuclear morphometry and tissue architecture analysis, but with emphasis on immunohistochemistry and fluorescence analysis of tissue biomarkers. Digital pathology and image analysis have important roles across the drug/companion diagnostic development pipeline including biobanking, molecular pathology, tissue microarray analysis, molecular profiling of tissue and these important developments are reviewed. Underpinning all of these important developments is the need for high quality tissue samples and the impact of pre-analytical variables on tissue research is discussed. This requirement is combined with practical advice on setting up and running a digital pathology laboratory. Finally, we discuss the need to integrate digital image analysis data with epidemiological, clinical and genomic data in order to fully understand the relationship between genotype and phenotype and to drive discovery and the delivery of personalized medicine.


Clinical Cancer Research | 2014

AXL Is a Key Regulator of Inherent and Chemotherapy-Induced Invasion and Predicts a Poor Clinical Outcome in Early-Stage Colon Cancer

Philip D. Dunne; Darragh G. McArt; Jaine K. Blayney; Murugan Kalimutho; Samanda Greer; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Maurice B. Loughrey; Keara Redmond; Daniel B. Longley; Manuel Salto-Tellez; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: Despite the use of 5-fluorouracil (5-FU)–based adjuvant treatments, a large proportion of patients with high-risk stage II/III colorectal cancer will relapse. Thus, novel therapeutic strategies are needed for early-stage colorectal cancer. Residual micrometastatic disease from the primary tumor is a major cause of patient relapse. Experimental Design: To model colorectal cancer tumor cell invasion/metastasis, we have generated invasive (KRASMT/KRASWT/+chr3/p53-null) colorectal cancer cell subpopulations. Receptor tyrosine kinase (RTK) screens were used to identify novel proteins that underpin the migratory/invasive phenotype. Migration/invasion was assessed using the XCELLigence system. Tumors from patients with early-stage colorectal cancer (N = 336) were examined for AXL expression. Results: Invasive colorectal cancer cell subpopulations showed a transition from an epithelial-to-mesenchymal like phenotype with significant increases in migration, invasion, colony-forming ability, and an attenuation of EGF receptor (EGFR)/HER2 autocrine signaling. RTK arrays showed significant increases in AXL levels in all invasive sublines. Importantly, 5-FU treatment resulted in significantly increased migration and invasion, and targeting AXL using pharmacologic inhibition or RNA interference (RNAi) approaches suppressed basal and 5-FU–induced migration and invasion. Significantly, high AXL mRNA and protein expression were found to be associated with poor overall survival in early-stage colorectal cancer tissues. Conclusions: We have identified AXL as a poor prognostic marker and important mediator of cell migration/invasiveness in colorectal cancer. These findings provide support for the further investigation of AXL as a novel prognostic biomarker and therapeutic target in colorectal cancer, in particular in the adjuvant disease in which EGFR/VEGF–targeted therapies have failed. Clin Cancer Res; 20(1); 164–75. ©2013 AACR.


Clinical Cancer Research | 2016

Challenging the cancer molecular stratification dogma: Intratumoral heterogeneity undermines consensus molecular subtypes and potential diagnostic value in colorectal cancer

Philip D. Dunne; Darragh G. McArt; Conor Bradley; Paul O'Reilly; Barrett Hl; Robert Cummins; O'Grady T; Kenneth Arthur; Maurice B. Loughrey; Wendy L. Allen; Simon S. McDade; David Waugh; Peter Hamilton; Daniel B. Longley; Elaine Kay; Patrick G. Johnston; Mark Lawler; Manuel Salto-Tellez; Van Schaeybroeck S

Purpose: A number of independent gene expression profiling studies have identified transcriptional subtypes in colorectal cancer with potential diagnostic utility, culminating in publication of a colorectal cancer Consensus Molecular Subtype classification. The worst prognostic subtype has been defined by genes associated with stem-like biology. Recently, it has been shown that the majority of genes associated with this poor prognostic group are stromal derived. We investigated the potential for tumor misclassification into multiple diagnostic subgroups based on tumoral region sampled. Experimental Design: We performed multiregion tissue RNA extraction/transcriptomic analysis using colorectal-specific arrays on invasive front, central tumor, and lymph node regions selected from tissue samples from 25 colorectal cancer patients. Results: We identified a consensus 30-gene list, which represents the intratumoral heterogeneity within a cohort of primary colorectal cancer tumors. Using a series of online datasets, we showed that this gene list displays prognostic potential HR = 2.914 (confidence interval 0.9286–9.162) in stage II/III colorectal cancer patients, but in addition, we demonstrated that these genes are stromal derived, challenging the assumption that poor prognosis tumors with stem-like biology have undergone a widespread epithelial–mesenchymal transition. Most importantly, we showed that patients can be simultaneously classified into multiple diagnostically relevant subgroups based purely on the tumoral region analyzed. Conclusions: Gene expression profiles derived from the nonmalignant stromal region can influence assignment of colorectal cancer transcriptional subtypes, questioning the current molecular classification dogma and highlighting the need to consider pathology sampling region and degree of stromal infiltration when employing transcription-based classifiers to underpin clinical decision making in colorectal cancer. Clin Cancer Res; 22(16); 4095–104. ©2016 AACR. See related commentary by Morris and Kopetz, p. 3989


Histopathology | 2014

The prognostic significance of the aberrant extremes of p53 immunophenotypes in breast cancer

David P. Boyle; Darragh G. McArt; Gareth Irwin; Charlotte Wilhelm-Benartzi; Tong F. Lioe; Elena Sebastian; Stephen McQuaid; Peter Hamilton; Jacqueline James; Paul B. Mullan; Mark A. Catherwood; D. Paul Harkin; Manuel Salto-Tellez

The utility of p53 as a prognostic assay has been elusive. The aims of this study were to describe a novel, reproducible scoring system and assess the relationship between differential p53 immunohistochemistry (IHC) expression patterns, TP53 mutation status and patient outcomes in breast cancer.


Scientific Reports | 2017

QuPath: Open source software for digital pathology image analysis

Peter Bankhead; Maurice B. Loughrey; José Antonio Fiz Fernández; Yvonne Dombrowski; Darragh G. McArt; Philip D. Dunne; Stephen McQuaid; Ronan T. Gray; Liam Murray; Helen G. Coleman; Jacqueline James; Manuel Salto-Tellez; Peter Hamilton

QuPath is new bioimage analysis software designed to meet the growing need for a user-friendly, extensible, open-source solution for digital pathology and whole slide image analysis. In addition to offering a comprehensive panel of tumor identification and high-throughput biomarker evaluation tools, QuPath provides researchers with powerful batch-processing and scripting functionality, and an extensible platform with which to develop and share new algorithms to analyze complex tissue images. Furthermore, QuPath’s flexible design makes it suitable for a wide range of additional image analysis applications across biomedical research.


Clinical Cancer Research | 2016

EphA2 expression is a key driver of migration and invasion and a poor prognostic marker in colorectal cancer.

Philip D. Dunne; Sonali Dasgupta; Jaine K. Blayney; Darragh G. McArt; Keara Redmond; Jessica-Anne Weir; Conor Bradley; Takehiko Sasazuki; Senji Shirasawa; Tingting Wang; Supriya Srivastava; Chee Wee Ong; Kenneth Arthur; Manuel Salto-Tellez; Richard Wilson; Patrick G. Johnston; Sandra Van Schaeybroeck

Purpose: EphA2, a member of the Eph receptor tyrosine kinases family, is an important regulator of tumor initiation, neovascularization, and metastasis in a wide range of epithelial and mesenchymal cancers; however, its role in colorectal cancer recurrence and progression is unclear. Experimental Design: EphA2 expression was determined by immunohistochemistry in stage II/III colorectal tumors (N = 338), and findings correlated with clinical outcome. The correlation between EphA2 expression and stem cell markers CD44 and Lgr5 was examined. The role of EphA2 in migration/invasion was assessed using a panel of KRAS wild-type (WT) and mutant (MT) parental and invasive colorectal cancer cell line models. Results: Colorectal tumors displayed significantly higher expression levels of EphA2 compared with matched normal tissue, which positively correlated with high CD44 and Lgr5 expression levels. Moreover, high EphA2 mRNA and protein expression were found to be associated with poor overall survival in stage II/III colorectal cancer tissues, in both univariate and multivariate analyses. Preclinically, we found that EphA2 was highly expressed in KRASMT colorectal cancer cells and that EphA2 levels are regulated by the KRAS-driven MAPK and RalGDS-RalA pathways. Moreover, EphA2 levels were elevated in several invasive daughter cell lines, and downregulation of EphA2 using RNAi or recombinant EFNA1 suppressed migration and invasion of KRASMT colorectal cancer cells. Conclusions: These data show that EpHA2 is a poor prognostic marker in stage II/III colorectal cancer, which may be due to its ability to promote cell migration and invasion, providing support for the further investigation of EphA2 as a novel prognostic biomarker and therapeutic target. Clin Cancer Res; 22(1); 230–42. ©2015 AACR.


PLOS ONE | 2011

Identification of candidate small-molecule therapeutics to cancer by gene-signature perturbation in connectivity mapping.

Darragh G. McArt; Shu-Dong Zhang

Connectivity mapping is a recently developed technique for discovering the underlying connections between different biological states based on gene-expression similarities. The sscMap method has been shown to provide enhanced sensitivity in mapping meaningful connections leading to testable biological hypotheses and in identifying drug candidates with particular pharmacological and/or toxicological properties. Challenges remain, however, as to how to prioritise the large number of discovered connections in an unbiased manner such that the success rate of any following-up investigation can be maximised. We introduce a new concept, gene-signature perturbation, which aims to test whether an identified connection is stable enough against systematic minor changes (perturbation) to the gene-signature. We applied the perturbation method to three independent datasets obtained from the GEO database: acute myeloid leukemia (AML), cervical cancer, and breast cancer treated with letrozole. We demonstrate that the perturbation approach helps to identify meaningful biological connections which suggest the most relevant candidate drugs. In the case of AML, we found that the prevalent compounds were retinoic acids and PPAR activators. For cervical cancer, our results suggested that potential drugs are likely to involve the EGFR pathway; and with the breast cancer dataset, we identified candidates that are involved in prostaglandin inhibition. Thus the gene-signature perturbation approach added real values to the whole connectivity mapping process, allowing for increased specificity in the identification of possible therapeutic candidates.


Mutagenesis | 2010

Comet sensitivity in assessing DNA damage and repair in different cell cycle stages

Darragh G. McArt; George McKerr; Kurt Saetzler; C. Vyvyan Howard; C. Stephen Downes; Gillian R. Wasson

The comet assay is a sensitive tool for estimation of DNA damage and repair at the cellular level, requiring only a very small number of cells. In comparing the levels of damage or repair in different cell samples, it is possible that small experimental effects could be confounded by different cell cycle states in the samples examined, if sensitivity to DNA damage, and repair capacity, varies with the cell cycle. We assessed this by arresting HeLa cells in various cell cycle stages and then exposing them to ionizing radiation. Unirradiated cells demonstrated significant differences in strand break levels measured by the comet assay (predominantly single-strand breaks) at different cell cycle stages, increasing from G(1) into S and falling again in G(2). Over and above this variation in endogenous strand break levels, a significant difference in susceptibility to breaks induced by 3.5 Gy ionizing radiation was also evident in different cell cycle phases. Levels of induced DNA damage fluctuate throughout the cycle, with cells in G(1) showing slightly lower levels of damage than an asynchronous population. Damage increases as cells progress through S phase before falling again towards the end of S phase and reaching lowest levels in M phase. The results from repair experiments (where cells were allowed to repair for 10 min after exposure to ionizing radiation) also showed differences throughout the cell cycle with G(1)-phase cells apparently being the most efficient at repair and M-phase cells the least efficient. We suggest, therefore, that in experiments where small differences in DNA damage and repair are to be investigated with the comet assay, it may be desirable to arrest cells in a specific stage of the cell cycle or to allow for differential cycle distribution.


BMC Bioinformatics | 2013

cudaMap: a GPU accelerated program for gene expression connectivity mapping

Darragh G. McArt; Peter Bankhead; Philip D. Dunne; Manuel Salto-Tellez; Peter Hamilton; Shu-Dong Zhang

BackgroundModern cancer research often involves large datasets and the use of sophisticated statistical techniques. Together these add a heavy computational load to the analysis, which is often coupled with issues surrounding data accessibility. Connectivity mapping is an advanced bioinformatic and computational technique dedicated to therapeutics discovery and drug re-purposing around differential gene expression analysis. On a normal desktop PC, it is common for the connectivity mapping task with a single gene signature to take > 2h to complete using sscMap, a popular Java application that runs on standard CPUs (Central Processing Units). Here, we describe new software, cudaMap, which has been implemented using CUDA C/C++ to harness the computational power of NVIDIA GPUs (Graphics Processing Units) to greatly reduce processing times for connectivity mapping.ResultscudaMap can identify candidate therapeutics from the same signature in just over thirty seconds when using an NVIDIA Tesla C2050 GPU. Results from the analysis of multiple gene signatures, which would previously have taken several days, can now be obtained in as little as 10 minutes, greatly facilitating candidate therapeutics discovery with high throughput. We are able to demonstrate dramatic speed differentials between GPU assisted performance and CPU executions as the computational load increases for high accuracy evaluation of statistical significance.ConclusionEmerging ‘omics’ technologies are constantly increasing the volume of data and information to be processed in all areas of biomedical research. Embracing the multicore functionality of GPUs represents a major avenue of local accelerated computing. cudaMap will make a strong contribution in the discovery of candidate therapeutics by enabling speedy execution of heavy duty connectivity mapping tasks, which are increasingly required in modern cancer research. cudaMap is open source and can be freely downloaded from http://purl.oclc.org/NET/cudaMap.

Collaboration


Dive into the Darragh G. McArt's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Philip D. Dunne

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Peter Hamilton

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Jacqueline James

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Stephen McQuaid

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Mark Lawler

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Aideen Roddy

Queen's University Belfast

View shared research outputs
Top Co-Authors

Avatar

Kevin Prise

Queen's University Belfast

View shared research outputs
Researchain Logo
Decentralizing Knowledge