Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Manuela Donalisio is active.

Publication


Featured researches published by Manuela Donalisio.


Journal of Virology | 2004

The Ribonucleotide Reductase R1 Homolog of Murine Cytomegalovirus Is Not a Functional Enzyme Subunit but Is Required for Pathogenesis

David Lembo; Manuela Donalisio; Anders Hofer; Maura Cornaglia; Wolfram Brune; Ulrich H. Koszinowski; Lars Thelander; Santo Landolfo

ABSTRACT Ribonucleotide reductase (RNR) is the key enzyme in the biosynthesis of deoxyribonucleotides. Alpha- and gammaherpesviruses express a functional enzyme, since they code for both the R1 and the R2 subunits. By contrast, betaherpesviruses contain an open reading frame (ORF) with homology to R1, but an ORF for R2 is absent, suggesting that they do not express a functional RNR. The M45 protein of murine cytomegalovirus (MCMV) exhibits the sequence features of a class Ia RNR R1 subunit but lacks certain amino acid residues believed to be critical for enzymatic function. It starts to be expressed independently upon the onset of viral DNA synthesis at 12 h after infection and accumulates at later times in the cytoplasm of the infected cells. Moreover, it is associated with the virion particle. To investigate direct involvement of the virally encoded R1 subunit in ribonucleotide reduction, recombinant M45 was tested in enzyme activity assays together with cellular R1 and R2. The results indicate that M45 neither is a functional equivalent of an R1 subunit nor affects the activity or the allosteric control of the mouse enzyme. To replicate in quiescent cells, MCMV induces the expression and activity of the cellular RNR. Mutant viruses in which the M45 gene has been inactivated are avirulent in immunodeficient SCID mice and fail to replicate in their target organs. These results suggest that M45 has evolved a new function that is indispensable for virus replication and pathogenesis in vivo.


Pharmacology & Therapeutics | 2009

Sulfated K5 Escherichia coli polysaccharide derivatives: A novel class of candidate antiviral microbicides.

Marco Rusnati; Elisa Vicenzi; Manuela Donalisio; Pasqua Oreste; Santo Landolfo; David Lembo

Antiviral microbicides, topical agents that prevent sexually transmitted infections, mainly work by blocking the interaction between viral proteins and cell surface components. In many instances, virus-cell interaction is mediated by cell surface heparan sulfate proteoglycans (HSPGs). HSPGs are exploited as attachment receptors by three sexually transmitted viruses: Human Immunodeficiency Virus (HIV), Herpes Simplex Virus (HSV) and Human Papilloma Virus (HPV). Since these viruses can either infect or co-infect humans, virus/HSPGs interaction is a preferential target for the development of wide-spectrum antiviral microbicides. Several polyanionic compounds prevent HIV, HSV and HPV infections in cell culture models by acting as heparan sulfate (HS)-antagonists. However, three promising polyanionic compounds recently failed to pass phase III clinical trials designed to establish their efficacy in preventing HIV acquisition. In this scenario, new polyanionic compounds must be added to the pipeline of candidate microbicides and their development as effective drugs reconsidered. The capsular K5 polysaccharide from Escherichia coli has the same structure as the heparin/HS biosynthetic precursor. Chemical and enzymatic modifications have led to the synthesis of K5 derivatives with different degrees of sulfation and charge distribution and devoid of anticoagulant activity and cell toxicity. Recently attracting attention as candidate microbicides, they potently inhibit a broad spectrum of HIV-1 strains and genital types of HPV and HSV-1 and 2 in vitro. With a focus on the K5 derivatives, this article reviews the literature on polyanions as antiviral microbicides and discusses the possible therapeutic implications of this novel class of compounds.


International Journal of Pharmaceutics | 2013

Encapsulation of Acyclovir in new carboxylated cyclodextrin-based nanosponges improves the agent's antiviral efficacy

David Lembo; Shankar Swaminathan; Manuela Donalisio; Andrea Civra; Linda Pastero; Dino Aquilano; Pradeep R. Vavia; Francesco Trotta; Roberta Cavalli

Cyclodextrin-based nanosponges (NS) are solid nanoparticles, obtained from the cross-linking of cyclodextrins that have been proposed as delivery systems for many types of drugs. Various NS derivatives are currently under investigation in order that their properties might be tuned for different applications. In this work, new carboxylated cyclodextrin-based nanosponges (Carb-NS) carrying carboxylic groups within their structure were purposely designed as novel Acyclovir carriers. TEM measurements revealed their spherical shape and size of about 400 nm. The behaviour of Carb-NS, with respect to the incorporation and delivery of Acyclovir, was compared to that of NS, previously investigated as a drug carrier. DSC, XRPD and FTIR analyses were used to investigate the two NS formulations. The results confirm the incorporation of the drug into the NS structure and NS-Acyclovir interactions. The Acyclovir loading into Carb-NS was higher than that obtained using NS, reaching about 70% (w/w). In vitro release studies showed the release kinetics of Acyclovir from Carb-NS to be prolonged in comparison with those observed with NS, with no initial burst effect. The NS uptake into cells was evaluated using fluorescent Carb-NS and revealed the nanoparticle internalisation. Enhanced antiviral activity against a clinical isolate of HSV-1 was obtained using Acyclovir loaded in Carb-NS.


International Journal of Nanomedicine | 2012

New chitosan nanobubbles for ultrasound-mediated gene delivery: preparation and in vitro characterization.

Roberta Cavalli; Agnese Bisazza; Michele Trotta; Monica Argenziano; Andrea Civra; Manuela Donalisio; David Lembo

Background The development of nonviral gene delivery systems is one of the most intriguing topics in nanomedicine. However, despite the advances made in recent years, several key issues remain unsettled. One of the main problems relates to the difficulty in designing nanodevices for targeted delivery of genes and other drugs to specific anatomic sites. In this study, we describe the development of a novel chitosan nanobubble-based gene delivery system for ultrasound-triggered release. Methods and results Chitosan was selected for the nanobubble shell because of its low toxicity, low immunogenicity, and excellent biocompatibility, while the core consisted of perfluoropentane. DNA-loaded chitosan nanobubbles were formed with a mean diameter of less than 300 nm and a positive surface charge. Transmission electron microscopic analysis confirmed composition of the core-shell structure. The ability of the chitosan nanobubbles to complex with and protect DNA was confirmed by agarose gel assay. Chitosan nanobubbles were found to be stable following insonation (2.5 MHz) for up to 3 minutes at 37°C. DNA release was evaluated in vitro in both the presence and absence of ultrasound. The release of chitosan nanobubble-bound plasmid DNA occurred after just one minute of insonation. In vitro transfection experiments were performed by exposing adherent COS7 cells to ultrasound in the presence of different concentrations of plasmid DNA-loaded nanobubbles. In the absence of ultrasound, nanobubbles failed to trigger transfection at all concentrations tested. In contrast, 30 seconds of ultrasound promoted a moderate degree of transfection. Cell viability experiments demonstrated that neither ultrasound nor the nanobubbles affected cell viability under these experimental conditions. Conclusion Based on these results, chitosan nanobubbles have the potential to be promising tools for ultrasound-mediated DNA delivery.


Journal of Controlled Release | 2009

Enhanced antiviral activity of Acyclovir loaded into β-cyclodextrin-poly(4-acryloylmorpholine) conjugate nanoparticles

Roberta Cavalli; Manuela Donalisio; Andrea Civra; Paolo Ferruti; Elisabetta Ranucci; Francesco Trotta; David Lembo

Novel polymeric nanoparticles based on a beta-cyclodextrin-poly(4-acryloylmorpholine) mono-conjugate (beta-CD-PACM), a tadpole-shaped polymer in which the beta-CD ring is the hydrophilic head and the PACM chain the amphiphilic tail, were prepared by the solvent injection technique. Acyclovir-loaded nanoparticles were prepared from inclusion complexes of Acyclovir with beta-CD-PACM. Both unloaded and drug-loaded nanoparticles were characterized in terms of particle size distribution, morphology, zeta potential, drug loading and in vitro drug release rate. The antiviral activity of Acyclovir loaded into beta-CD-PACM nanoparticles against two clinical isolates of HSV-1 was evaluated and found to be remarkably superior compared with that of both the free drug and a soluble beta-CD-PACM complex reported in a previous paper. Fluorescent nanoparticles loaded with coumarin 6 were also prepared in order to investigate the nanoparticle cell uptake by confocal laser microscopy. It was found that the nanoparticles are internalized in cells and locate in the perinuclear compartment.


Antimicrobial Agents and Chemotherapy | 2010

Identification of a Dendrimeric Heparan Sulfate-Binding Peptide That Inhibits Infectivity of Genital Types of Human Papillomaviruses

Manuela Donalisio; Marco Rusnati; Andrea Civra; Antonella Bugatti; Donatella Allemand; Giovanna Pirri; Andrea Giuliani; Santo Landolfo; David Lembo

ABSTRACT Peptide dendrimers consist of a peptidyl branching core and/or covalently attached surface functional units. They show a variety of biological properties, including antiviral activity. In this study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was evaluated for in vitro activity against human papillomaviruses (HPVs). The peptide dendrimer SB105-A10 was found to be a potent inhibitor of genital HPV types (i.e., types 16, 18, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 2.8 and 4.2 μg/ml (0.59 and 0.88 μM), and no evidence of cytotoxicity was observed. SB105-A10 interacts with immobilized heparin and with heparan sulfates exposed on the cell surface, most likely preventing virus attachment. The findings from this study indicate SB105-A10 to be a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections.


Scientific Reports | 2015

Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol

Andrea Civra; Valeria Cagno; Manuela Donalisio; Fiorella Biasi; Gabriella Leonarduzzi; Giuseppe Poli; David Lembo

Recent studies reported a broad but selective antiviral activity of 25-hydroxycholesterol (25HC) against enveloped viruses, being apparently inactive against non-enveloped viruses. Here we show that 25HC is endowed with a marked antiviral activity against three pathogenic non-enveloped viruses, i.e. human papillomavirus-16 (HPV-16), human rotavirus (HRoV), and human rhinovirus (HRhV), thus significantly expanding its broad antiviral spectrum, so far recognized to be limited to viruses with envelope. Moreover, here we disclose the remarkable antiviral activity of another oxysterol of physiological origin, i.e. 27-hydroxycholesterol (27HC), against HPV-16, HRoV and HRhV. We have also identified a much weaker antiviral activity of other oxysterols of pathophysiological relevance, i.e 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol. These findings suggest that appropriate modulation of endogenous production of oxysterols might be a primary host strategy to counteract a broad panel of viral infections. Moreover, 25HC and 27HC could be considered for new therapeutic strategies against HPV-16, HRoV and HRhV.


Antimicrobial Agents and Chemotherapy | 2008

Sulfated K5 Escherichia coli Polysaccharide Derivatives as Wide-Range Inhibitors of Genital Types of Human Papillomavirus

David Lembo; Manuela Donalisio; Marco Rusnati; Antonella Bugatti; Maura Cornaglia; Paola Cappello; Mirella Giovarelli; Pasqua Oreste; Santo Landolfo

ABSTRACT Genital human papillomaviruses (HPV) represent the most common sexually transmitted agents and are classified into low or high risk by their propensity to cause genital warts or cervical cancer, respectively. Topical microbicides against HPV may be a useful adjunct to the newly licensed HPV vaccine. A main objective in the development of novel microbicides is to block HPV entry into epithelial cells through cell surface heparan sulfate proteoglycans. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was integrated with innovative biochemical and biological assays to prepare a collection of sulfated K5 derivatives with a backbone structure resembling the heparin/heparan biosynthetic precursor and to test them for their anti-HPV activity. Surface plasmon resonance assays revealed that O-sulfated K5 with a high degree of sulfation [K5-OS(H)] and N,O-sulfated K5 with a high [K5-N,OS(H)] or low [K5-N,OS(L)] sulfation degree, but not unmodified K5, N-sulfated K5, and O-sulfated K5 with low levels of sulfation, prevented the interaction between HPV-16 pseudovirions and immobilized heparin. In cell-based assays, K5-OS(H), K5-N,OS(H), and K5-N,OS(L) inhibited HPV-16, HPV-18, and HPV-6 pseudovirion infection. Their 50% inhibitory concentration was between 0.1 and 0.9 μg/ml, without evidence of cytotoxicity. These findings provide insights into the design of novel, safe, and broad-spectrum microbicides against genital HPV infections.


Antimicrobial Agents and Chemotherapy | 2012

Inhibition of Human Respiratory Syncytial Virus Infectivity by a Dendrimeric Heparan Sulfate-Binding Peptide

Manuela Donalisio; Marco Rusnati; Cagno; Andrea Civra; Antonella Bugatti; Andrea Giuliani; Giovanna Pirri; Marco Volante; Papotti M; Santo Landolfo; David Lembo

ABSTRACT Respiratory syncytial virus (RSV) interacts with cell surface heparan sulfate proteoglycans (HSPGs) to initiate infection. The interaction of RSV with HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In the present study, a minilibrary of linear, dimeric, and dendrimeric peptides containing clusters of basic amino acids was screened with the aim of identifying peptides able to bind HSPGs and thus block RSV attachment and infectivity. Of the compounds identified, the dendrimer SB105-A10 was the most potent inhibitor of RSV infectivity, with 50% inhibitory concentrations (IC50s) of 0.35 μM and 0.25 μM measured in Hep-2 and A549 cells, respectively. SB105-A10 was found to bind to both cell types via HSPGs, suggesting that its antiviral activity is indeed exerted by competing with RSV for binding to cell surface HSPGs. SB105-A10 prevented RSV infection when added before the viral inoculum, in line with its proposed HSPG-binding mechanism of action; moreover, antiviral activity was also exhibited when SB105-A10 was added postinfection, as it was able to reduce the cell-to-cell spread of the virus. The antiviral potential of SB105-A10 was further assessed using human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. SB105-A10 strongly reduced RSV infectivity in this model and exhibited no signs of cytotoxicity or proinflammatory effects. Together, these features render SB105-A10 an attractive candidate for further development as a RSV inhibitor to be administered by aerosol delivery.


Virus Research | 2008

TGF-β1 and IL-4 downregulate human papillomavirus-16 oncogene expression but have differential effects on the malignant phenotype of cervical carcinoma cells

Manuela Donalisio; Maura Cornaglia; Santo Landolfo; David Lembo

Host immune response to human papillomavirus (HPV) is a crucial factor in viral clearance and control of persistent infections. The existence of an intercellular control mechanism mediated by cytokines to suppress HPV-gene transcription and to prevent malignant conversion of HPV-infected cells, has been postulated. In a previous study, we demonstrated the inhibitory activity of several cytokines on the HPV-16 long control region (LCR)-driven transcription; among these, IL-4 was reported as a LCR inhibitor for the first time and proposed as a candidate for further studies. Here, we addressed the question of whether IL-4 represses HPV-16 oncogene transcription and exerts antitumor activity in HPV-16 positive cervical carcinoma cell lines. Results indicated that downregulation of E6 and E7 levels by IL-4 in CaSki cells is weaker than that exerted by TGF-beta1, a known LCR inhibitor, although both cytokines are equally active in suppressing LCR-driven transcriptional activity in a reporter cell line. Moreover, only TGF-beta rescued p53 expression, Rb response pathway, and induced cellular senescence. SiHa cells were unresponsive to both cytokines. These findings suggest that the two cytokines may play a role in the control of HPV infections, however, cervical carcinoma cells developed a partial or a total resistance to their inhibitory activity.

Collaboration


Dive into the Manuela Donalisio's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge