Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Valeria Cagno is active.

Publication


Featured researches published by Valeria Cagno.


Scientific Reports | 2015

Inhibition of pathogenic non-enveloped viruses by 25-hydroxycholesterol and 27-hydroxycholesterol

Andrea Civra; Valeria Cagno; Manuela Donalisio; Fiorella Biasi; Gabriella Leonarduzzi; Giuseppe Poli; David Lembo

Recent studies reported a broad but selective antiviral activity of 25-hydroxycholesterol (25HC) against enveloped viruses, being apparently inactive against non-enveloped viruses. Here we show that 25HC is endowed with a marked antiviral activity against three pathogenic non-enveloped viruses, i.e. human papillomavirus-16 (HPV-16), human rotavirus (HRoV), and human rhinovirus (HRhV), thus significantly expanding its broad antiviral spectrum, so far recognized to be limited to viruses with envelope. Moreover, here we disclose the remarkable antiviral activity of another oxysterol of physiological origin, i.e. 27-hydroxycholesterol (27HC), against HPV-16, HRoV and HRhV. We have also identified a much weaker antiviral activity of other oxysterols of pathophysiological relevance, i.e 7α-hydroxycholesterol, 7β-hydroxycholesterol, and 7-ketocholesterol. These findings suggest that appropriate modulation of endogenous production of oxysterols might be a primary host strategy to counteract a broad panel of viral infections. Moreover, 25HC and 27HC could be considered for new therapeutic strategies against HPV-16, HRoV and HRhV.


Antimicrobial Agents and Chemotherapy | 2014

Highly Sulfated K5 Escherichia coli Polysaccharide Derivatives Inhibit Respiratory Syncytial Virus Infectivity in Cell Lines and Human Tracheal-Bronchial Histocultures

Valeria Cagno; Manuela Donalisio; Andrea Civra; Marco Volante; Elena Veccelli; Pasqua Oreste; Marco Rusnati; David Lembo

ABSTRACT Respiratory syncytial virus (RSV) exploits cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The interaction between RSV and HSPGs thus presents an attractive target for the development of novel inhibitors of RSV infection. In this study, selective chemical modification of the Escherichia coli K5 capsular polysaccharide was used to generate a collection of sulfated K5 derivatives with a backbone structure that mimics the heparin/heparan sulfate biosynthetic precursor. The screening of a series of N-sulfated (K5-NS), O-sulfated (K5-OS), and N,O-sulfated (K5-N,OS) derivatives with different degrees of sulfation revealed the highly sulfated K5 derivatives K5-N,OS(H) and K5-OS(H) to be inhibitors of RSV. Their 50% inhibitory concentrations were between 1.07 nM and 3.81 nM in two different cell lines, and no evidence of cytotoxicity was observed. Inhibition of RSV infection was maintained in binding and attachment assays but not in preattachment assays. Moreover, antiviral activity was also evident when the K5 derivatives were added postinfection, both in cell-to-cell spread and viral yield reduction assays. Finally, both K5-N,OS(H) and K5-OS(H) prevented RSV infection in human-derived tracheal/bronchial epithelial cells cultured to form a pseudostratified, highly differentiated model of the epithelial tissue of the human respiratory tract. Together, these features put K5-N,OS(H) and K5-OS(H) forward as attractive candidates for further development as RSV inhibitors.


Journal of Perinatal Medicine | 2014

Inactivation of high-risk human papillomaviruses by Holder pasteurization: implications for donor human milk banking.

Manuela Donalisio; Valeria Cagno; Marta Vallino; Guido E. Moro; Sertac Arslanoglu; Paola Tonetto; Enrico Bertino; David Lembo

Abstract Aims: Several studies have recently reported the detection of oncogenic human papillomaviruses (HPV) in human milk of a minority of lactating mothers. These findings raised safety concerns in the context of human donor milk banking given the potential risk of HPV transmission to recipient infants. The aim of this study was to investigate whether the Holder pasteurization, a procedure currently in use in human donor milk banks for milk pasteurization, completely inactivates high-risk and low-risk HPV. Methods: HPV pseudoviruses (PsV) were generated, spiked into cell culture medium or donor human milk and subjected to thermal inactivation. HPV PsV infectivity and morphological integrity was analyzed by cell-based assay and by electron microscopy, respectively. Results: The Holder pasteurization completely inactivated the infectivity of high-risk (types 16 and 18) and low-risk (type 6) HPV both in cell culture medium and in human milk causing PsV particle disassembly. Conclusions: The results presented here indicate that the Holder pasteurization is an efficient procedure to inactivate high-risk and low-risk HPV thus preventing the potential risk of their transmission through human donor milk.


European Journal of Pharmaceutics and Biopharmaceutics | 2014

Auto-associative heparin nanoassemblies: a biomimetic platform against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV.

David Lembo; Manuela Donalisio; Claire Laine; Valeria Cagno; Andrea Civra; Elsa P. Bianchini; Narimane Zeghbib; Kawthar Bouchemal

A new, simple and green method was developed for the manufacturing of heparin nanoassemblies active against the heparan sulfate-dependent viruses HSV-1, HSV-2, HPV-16 and RSV. These nanoassemblies were obtained by the auto-association of O-palmitoyl-heparin and α-cyclodextrin in water. The synthesized O-palmitoyl-heparin derivatives mixed with α-cyclodextrin resulted in the formation of crystalline hexagonal nanoassemblies as observed by transmission electron microscopy. The nanoassembly mean hydrodynamic diameters were modulated from 340 to 659 nm depending on the type and the initial concentration of O-palmitoyl-heparin or α-cyclodextrin. The antiviral activity of the nanoassemblies was not affected by the concentration of the components. However, the method of the synthesis of O-palmitoyl-heparin affected the antiviral activity of the formulations. We showed that reduced antiviral activity is correlated with lower sulfation degree and anticoagulant activity.


Molecular Aspects of Medicine | 2016

Oxysterols: An emerging class of broad spectrum antiviral effectors.

David Lembo; Valeria Cagno; Andrea Civra; Giuseppe Poli

Oxysterols are a family of cholesterol oxidation derivatives that contain an additional hydroxyl, epoxide or ketone group in the sterol nucleus and/or a hydroxyl group in the side chain. The majority of oxysterols in the blood are of endogenous origin, derived from cholesterol via either enzymatic or non-enzymatic mechanisms. A large number of reports demonstrate multiple physiological roles of specific oxysterols. One such role is the inhibition of viral replication. This biochemical/biological property was first characterised against a number of viruses endowed with an external lipid membrane (enveloped viruses), although antiviral activity has since been observed in relation to several non-enveloped viruses. In the present paper, we review the recent findings about the broad antiviral activity of oxysterols against enveloped and non-enveloped human viral pathogens, and provide an overview of their putative antiviral mechnism(s).


Antimicrobial Agents and Chemotherapy | 2014

Agmatine-Containing Poly(amidoamine)s as a Novel Class of Antiviral Macromolecules: Structural Properties and In Vitro Evaluation of Infectivity Inhibition

Manuela Donalisio; Elisabetta Ranucci; Valeria Cagno; Andrea Civra; Amedea Manfredi; Roberta Cavalli; Paolo Ferruti; David Lembo

ABSTRACT Poly(amidoamine)s (PAAs) are multifunctional tert-amine polymers endowed with high structural versatility. Here we report on the screening of a minilibrary of PAAs against a panel of viruses. The PAA AGMA1 showed antiviral activity against herpes simplex virus, human cytomegalovirus, human papillomavirus 16, and respiratory syncytial virus but not against human rotavirus and vesicular stomatitis virus. The results suggest the contribution of both a polycationic nature and side guanidine groups in imparting antiviral activity.


Biomaterials | 2016

The AGMA1 poly(amidoamine) inhibits the infectivity of herpes simplex virus in cell lines, in human cervicovaginal histocultures, and in vaginally infected mice

Manuela Donalisio; Paola Quaranta; Flavia Chiuppesi; Mauro Pistello; Valeria Cagno; Roberta Cavalli; Marco Volante; Antonella Bugatti; Marco Rusnati; Elisabetta Ranucci; Paolo Ferruti; David Lembo

The development of topical microbicides is a valid approach to protect the genital mucosa from sexually transmitted infections that cannot be contained with effective vaccination, like HSV and HIV infections. A suitable target of microbicides is the interaction between viral proteins and cell surface heparan sulfate proteoglycans (HSPGs). AGMA1 is a prevailingly cationic agmatine-containing polyamidoamine polymer previously shown to inhibit HSPGs dependent viruses, including HSV-1, HSV-2, and HPV-16. The aim of this study was to elucidate the mechanism of action of AGMA1 against HSV infection and assess its antiviral efficacy and biocompatibility in preclinical models. The results show AGMA1 to be a non-toxic inhibitor of HSV infectivity in cell cultures and human cervicovaginal histocultures. Moreover, it significantly reduced the burden of infection of HSV-2 genital infection in mice. The investigation of the mechanism of action revealed that AGMA1 reduces cells susceptibility to virus infection by binding to cell surface HSPGs thereby preventing HSV attachment. This study indicates that AGMA1 is a promising candidate for the development of a topical microbicide to prevent sexually transmitted HSV infections.


Antimicrobial Agents and Chemotherapy | 2015

The Agmatine-Containing Poly(Amidoamine) Polymer AGMA1 Binds Cell Surface Heparan Sulfates and Prevents Attachment of Mucosal Human Papillomaviruses

Valeria Cagno; Manuela Donalisio; Antonella Bugatti; Andrea Civra; Roberta Cavalli; Elisabetta Ranucci; Paolo Ferruti; Marco Rusnati; David Lembo

ABSTRACT The agmatine-containing poly(amidoamine) polymer AGMA1 was recently shown to inhibit the infectivity of several viruses, including human papillomavirus 16 (HPV-16), that exploit cell surface heparan sulfate proteoglycans (HSPGs) as attachment receptors. The aim of this work was to assess the antiviral activity of AGMA1 and its spectrum of activity against a panel of low-risk and high-risk HPVs and to elucidate its mechanism of action. AGMA1 was found to be a potent inhibitor of mucosal HPV types (i.e., types 16, 31, 45, and 6) in pseudovirus-based neutralization assays. The 50% inhibitory concentration was between 0.34 μg/ml and 0.73 μg/ml, and no evidence of cytotoxicity was observed. AGMA1 interacted with immobilized heparin and with cellular heparan sulfates, exerting its antiviral action by preventing virus attachment to the cell surface. The findings from this study indicate that AGMA1 is a leading candidate compound for further development as an active ingredient of a topical microbicide against HPV and other sexually transmitted viral infections.


Redox biology | 2017

Inhibition of herpes simplex-1 virus replication by 25-hydroxycholesterol and 27-hydroxycholesterol

Valeria Cagno; Andrea Civra; Daniela Rossin; Simone Calfapietra; Claudio Caccia; Valerio Leoni; Nicholas Dorma; Fiorella Biasi; Giuseppe Poli; David Lembo

Oxysterols are known pleiotropic molecules whose antiviral action has been recently discovered. Here reported is the activity of a panel of oxysterols against HSV-1 with the identification of a new mechanism of action. A marked antiviral activity not only of 25HC but also of 27HC against HSV-1 was observed either if the oxysterols were added before or after infection, suggesting an activity unrelated to the viral entry inhibition as proposed by previous literature. Therefore, the relation between the pro-inflammatory activity of oxysterols and the activation of NF-kB and IL-6 induced by HSV-1 in the host cell was investigated. Indeed, cell pre-incubation with oxysterols further potentiated IL-6 production as induced by HSV-1 infection with a consequent boost of the interleukins total cell secretion. Further, a direct antiviral effect of IL-6 administration to HSV-1 infected cells was demonstrated, disclosing an additional mechanism of antiviral action by both 25HC and 27HC.


Archives of Virology | 2016

Ficus religiosa L. bark extracts inhibit infection by herpes simplex virus type 2 in vitro

Manik Ghosh; Andrea Civra; Massimo Rittà; Valeria Cagno; Siva Mavuduru; Preeti Awasthi; David Lembo; Manuela Donalisio

Ficus religiosa extracts have been used in traditional Indian medicine to treat sexually transmitted infections such as gonorrhea and genital ulcers. The aim of this study was to investigate the antiviral activity of F. religiosa extracts against herpes simplex virus type 2 (HSV-2), the main causative agent of genital ulcers and sores. Water and chloroform bark extracts were the most active against HSV-2, and also against an acyclovir-resistant strain. We demonstrate that the water extract has a direct virus-inactivating activity. By contrast, the chloroform extract inhibits viral attachment and entry and limits the production of viral progeny.

Collaboration


Dive into the Valeria Cagno's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge