Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Mara E. Pitulescu is active.

Publication


Featured researches published by Mara E. Pitulescu.


Nature | 2010

Ephrin-B2 controls VEGF-induced angiogenesis and lymphangiogenesis

Yingdi Wang; Masanori Nakayama; Mara E. Pitulescu; Tim Schmidt; Magdalena L. Bochenek; Akira Sakakibara; Susanne Adams; Alice Davy; Urban Deutsch; Urs Lüthi; Alcide Barberis; Laura E. Benjamin; Taija Mäkinen; Catherine D. Nobes; Ralf H. Adams

In development, tissue regeneration or certain diseases, angiogenic growth leads to the expansion of blood vessels and the lymphatic vasculature. This involves endothelial cell proliferation as well as angiogenic sprouting, in which a subset of cells, termed tip cells, acquires motile, invasive behaviour and extends filopodial protrusions. Although it is already appreciated that angiogenesis is triggered by tissue-derived signals, such as vascular endothelial growth factor (VEGF) family growth factors, the resulting signalling processes in endothelial cells are only partly understood. Here we show with genetic experiments in mouse and zebrafish that ephrin-B2, a transmembrane ligand for Eph receptor tyrosine kinases, promotes sprouting behaviour and motility in the angiogenic endothelium. We link this pro-angiogenic function to a crucial role of ephrin-B2 in the VEGF signalling pathway, which we have studied in detail for VEGFR3, the receptor for VEGF-C. In the absence of ephrin-B2, the internalization of VEGFR3 in cultured cells and mutant mice is defective, which compromises downstream signal transduction by the small GTPase Rac1, Akt and the mitogen-activated protein kinase Erk. Our results show that full VEGFR3 signalling is coupled to receptor internalization. Ephrin-B2 is a key regulator of this process and thereby controls angiogenic and lymphangiogenic growth.


Nature | 2010

Ephrin-B2 regulates VEGFR2 function in developmental and tumour angiogenesis

Suphansa Sawamiphak; Sascha Seidel; Clara L. Essmann; George A. Wilkinson; Mara E. Pitulescu; Till Acker; Amparo Acker-Palmer

The formation and guidance of specialized endothelial tip cells is essential for both developmental and pathological angiogenesis. Notch-1 signalling regulates the generation of tip cells, which respond to gradients of vascular endothelial growth factor (VEGF-A). The molecular cues and signalling pathways that control the guidance of tip cells are poorly understood. Bidirectional signalling by Eph receptors and ephrin ligands represents one of the most important guidance cues involved in axon path finding. Here we show that ephrin-B2 reverse signalling involving PDZ interactions regulates endothelial tip cell guidance to control angiogenic sprouting and branching in physiological and pathological angiogenesis. In vivo, ephrin-B2 PDZ-signalling-deficient mice (ephrin-B2ΔV) exhibit a reduced number of tip cells with fewer filopodial extensions at the vascular front in the mouse retina. In pathological settings, impaired PDZ signalling decreases tumour vascularization and growth. Mechanistically, we show that ephrin-B2 controls VEGF receptor (VEGFR)-2 internalization and signalling. Importantly, internalization of VEGFR2 is necessary for activation and downstream signalling of the receptor and is required for VEGF-induced tip cell filopodial extension. Together, our results suggest that ephrin-B2 at the tip cell filopodia regulates the proper spatial activation of VEGFR2 endocytosis and signalling to direct filopodial extension. Blocking ephrin-B2 reverse signalling may be an attractive alternative or combinatorial anti-angiogenic therapy strategy to disrupt VEGFR2 function in tumour angiogenesis.


Genes & Development | 2010

Eph/ephrin molecules—a hub for signaling and endocytosis

Mara E. Pitulescu; Ralf H. Adams

The development, homeostasis, and regeneration of complex organ systems require extensive cell-cell communication to ensure that different cells proliferate, migrate, differentiate, assemble, and function in a coordinated and timely fashion. Eph receptor tyrosine kinases and their ephrin ligands are critical regulators of cell contact-dependent signaling and patterning. Eph/ephrin binding can lead to very diverse biological readouts such as adhesion versus repulsion, or increased versus decreased motility. Accordingly, depending on cell type and context, a limited and conserved set of receptor-ligand interactions is translated into a large variety of downstream signaling processes. Recent evidence indicates that the endocytosis of Eph/ephrin molecules, together with the internalization of various associated tissue-specific effectors, might be one of the key principles responsible for such highly diverse and adaptable biological roles. Here, we summarize recent insights into Eph/ephrin signaling and endocytosis in three biological systems; i.e., the brain, intestine, and vasculature.


Nature Protocols | 2010

Inducible gene targeting in the neonatal vasculature and analysis of retinal angiogenesis in mice

Mara E. Pitulescu; Inga Schmidt; Rui Benedito; Ralf H. Adams

The retina is a powerful experimental system for the analysis of angiogenic blood vessel growth in the postnatal organisms. The three-dimensional architecture of the vessel network and processes as diverse as endothelial cell (EC) proliferation, sprouting, perivascular cell recruitment, vessel remodeling or maturation can be investigated at high resolution. The characterization of physiological and pathological angiogenic processes in mice has been greatly facilitated by inducible and cell type–specific loss-of-function and gain-of-function genetics. In this paper, we provide a detailed protocol for tamoxifen-inducible gene deletion in neonatal mice, as well as for retina dissection, whole-mount immunostaining and the quantitation of EC sprouting and proliferation. These methods have been optimized by our laboratory and yield reliable results. The entire protocol takes ~10 d to complete.


Nature Cell Biology | 2014

Direct cell–cell contact with the vascular niche maintains quiescent neural stem cells

Cristina Ottone; Benjamin Krusche; Ariadne Whitby; Melanie Clements; Giorgia Quadrato; Mara E. Pitulescu; Ralf H. Adams; Simona Parrinello

The vasculature is a prominent component of the subventricular zone neural stem cell niche. Although quiescent neural stem cells physically contact blood vessels at specialized endfeet, the significance of this interaction is not understood. In contrast, it is well established that vasculature-secreted soluble factors promote lineage progression of committed progenitors. Here we specifically investigated the role of cell–cell contact-dependent signalling in the vascular niche. Unexpectedly, we find that direct cell–cell interactions with endothelial cells enforce quiescence and promote stem cell identity. Mechanistically, endothelial ephrinB2 and Jagged1 mediate these effects by suppressing cell-cycle entry downstream of mitogens and inducing stemness genes to jointly inhibit differentiation. In vivo, endothelial-specific ablation of either of the genes which encode these proteins, Efnb2 and Jag1 respectively, aberrantly activates quiescent stem cells, resulting in depletion. Thus, we identify the vasculature as a critical niche compartment for stem cell maintenance, furthering our understanding of how anchorage to the niche maintains stem cells within a pro-differentiative microenvironment.


Nature Communications | 2013

Sox17 is indispensable for acquisition and maintenance of arterial identity

Monica Corada; Fabrizio Orsenigo; Marco Francesco Morini; Mara E. Pitulescu; Ganesh Bhat; Daniel Nyqvist; Ferruccio Breviario; Valentina Conti; Anaïs Briot; M. Luisa Iruela-Arispe; Ralf H. Adams; Elisabetta Dejana

The functional diversity of the arterial and venous endothelia is regulated through a complex system of signalling pathways and downstream transcription factors. Here we report that the transcription factor Sox17, which is known as a regulator of endoderm and hemopoietic differentiation, is selectively expressed in arteries, and not in veins, in the mouse embryo and in mouse postnatal retina and adult. Endothelial cell-specific inactivation of Sox17 in the mouse embryo is accompanied by a lack of arterial differentiation and vascular remodelling that results in embryo death in utero. In mouse postnatal retina, abrogation of Sox17 expression in endothelial cells leads to strong vascular hypersprouting, loss of arterial identity and large arteriovenous malformations. Mechanistically, Sox17 acts upstream of the Notch system and downstream of the canonical Wnt system. These data introduce Sox17 as a component of the complex signalling network that orchestrates arterial/venous specification.


Current Molecular Medicine | 2008

MicroRNAs in organogenesis and disease.

Naisana S. Asli; Mara E. Pitulescu; Michael Kessel

Large numbers and quantities of different, small RNA molecules are present in the cytoplasm of animal and plant cells. One subclass of these molecules is represented by the noncoding microRNAs. Since their discovery in the 1990s a multitude of basic information has accumulated, which has identified their function in post-transcriptional control, either via degradation or translational inhibition of target mRNAs. This function is in most of the cases a finetuning of gene expression, working in parallel with transcriptional regulatory processes. MicroRNA expression profiles are highly dynamic during embryonic development and in adulthood. Misexpression of microRNAs can perturb embryogenesis, organogenesis, tissue homeostasis and the cell cycle. Evidence from gain- and loss-of function studies indicates roles for microRNAs in pathophysiologic states including cardiac hypertrophy, muscle dystrophy, hepatitis infection, diabetes, Parkinson syndrome, hematological malignancies and other types of cancer. In this review, we focus on studies addressing the role of various microRNAs in heart, muscle, liver, pancreas, central nervous system, and hematopoiesis.


Nature Communications | 2014

Arteries are formed by vein-derived endothelial tip cells.

Cong Xu; Sana S. Hasan; Inga Schmidt; Susana F. Rocha; Mara E. Pitulescu; Jeroen Bussmann; Dana Meyen; Erez Raz; Ralf H. Adams; Arndt F. Siekmann

Tissue vascularization entails the formation of a blood vessel plexus, which remodels into arteries and veins. Here we show, by using time-lapse imaging of zebrafish fin regeneration and genetic lineage tracing of endothelial cells in the mouse retina, that vein-derived endothelial tip cells contribute to emerging arteries. Our movies uncover that arterial-fated tip cells change migration direction and migrate backwards within the expanding vascular plexus. This behaviour critically depends on chemokine receptor cxcr4a function. We show that the relevant Cxcr4a ligand Cxcl12a selectively accumulates in newly forming bone tissue even when ubiquitously overexpressed, pointing towards a tissue-intrinsic mode of chemokine gradient formation. Furthermore, we find that cxcr4a mutant cells can contribute to developing arteries when in association with wild-type cells, suggesting collective migration of endothelial cells. Together, our findings reveal specific cell migratory behaviours in the developing blood vessel plexus and uncover a conserved mode of artery formation.


Cellular and Molecular Life Sciences | 2005

The regulation of embryonic patterning and DNA replication by geminin

Mara E. Pitulescu; Michael Kessel; Lingfei Luo

Abstract.Geminin is a multifunctional protein. After DNA replication is initiated during a cell cycle, geminin binds to Cdt1, one of the key DNA replication licensing factors. This highly regulated interaction sequestrates Cdt1, thus preventing DNA rereplication in the same cell cycle. In addition, geminin directly interacts with Six3 and Hox homeodomain proteins during embryogenesis and inhibits their functions. The regulation of Hox function by geminin also involves a transient association with the Hox repressive Polycomb complex. The functions of geminin to obstruct key molecules of both cell proliferation and embryonic development suggest a competitive coordination of these two processes.


Nature Cell Biology | 2017

Cell-matrix signals specify bone endothelial cells during developmental osteogenesis

Urs H. Langen; Mara E. Pitulescu; Jung Mo Kim; Rocio Enriquez-Gasca; Kishor K. Sivaraj; Anjali P. Kusumbe; Amit Singh; Jacopo Di Russo; M. Gabriele Bixel; Bin Zhou; Lydia Sorokin; Juan M. Vaquerizas; Ralf H. Adams

Blood vessels in the mammalian skeletal system control bone formation and support haematopoiesis by generating local niche environments. While a specialized capillary subtype, termed type H, has been recently shown to couple angiogenesis and osteogenesis in adolescent, adult and ageing mice, little is known about the formation of specific endothelial cell populations during early developmental endochondral bone formation. Here, we report that embryonic and early postnatal long bone contains a specialized endothelial cell subtype, termed type E, which strongly supports osteoblast lineage cells and later gives rise to other endothelial cell subpopulations. The differentiation and functional properties of bone endothelial cells require cell–matrix signalling interactions. Loss of endothelial integrin β1 leads to endothelial cell differentiation defects and impaired postnatal bone growth, which is, in part, phenocopied by endothelial cell-specific laminin α5 mutants. Our work outlines fundamental principles of vessel formation and endothelial cell differentiation in the developing skeletal system.

Collaboration


Dive into the Mara E. Pitulescu's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Bin Zhou

Chinese Academy of Sciences

View shared research outputs
Top Co-Authors

Avatar

Erez Raz

University of Münster

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Susana F. Rocha

Centro Nacional de Investigaciones Cardiovasculares

View shared research outputs
Top Co-Authors

Avatar

Bingruo Wu

Albert Einstein College of Medicine

View shared research outputs
Researchain Logo
Decentralizing Knowledge