Marc D. Bullock
University of Southampton
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marc D. Bullock.
Biology of the Cell | 2012
Marc D. Bullock; Abdulkadir Emre Sayan; Graham Packham; Alex H. Mirnezami
MicroRNAs (miRNAs) are a class of small highly conserved RNAs that provide widespread expressional control through the translational repression of mRNA. MiRNAs have fundamental roles in the regulation of intracellular processes, and their importance during malignant transformation and metastasis is becoming increasingly well recognized. An important event in the metastatic cascade is epithelial to mesenchymal transition (EMT), a reversible phenotypic switch over, which endows malignant epithelial cells with the capacity to break free from one another and invade the surrounding stroma. Our understanding of EMT has been significantly improved by the characterization of miRNAs that influence the signalling pathways and downstream events that define EMT on a molecular level.
Cancer Research | 2013
Lei Zhang; Karen Pickard; Veronika Jenei; Marc D. Bullock; Amanda Bruce; Richard Mitter; Gavin Kelly; Christos Paraskeva; John Strefford; John Primrose; Gareth J. Thomas; Graham Packham; Alex H. Mirnezami
Although microRNAs (miRNA) have been broadly studied in cancer, comparatively less is understood about their role in progression. Here we report that miR-153 has a dual role during progression of colorectal cancer by enhancing cellular invasiveness and platinum-based chemotherapy resistance. miRNA profiling revealed that miR-153 was highly expressed in a cellular model of advanced stage colorectal cancer. Its upregulation was also noted in primary human colorectal cancer compared with normal colonic epithelium and in more advanced colorectal cancer stages compared with early stage disease. In colorectal cancer patients followed for 50 months, 21 of 30 patients with high levels of miR-153 had disease progression compared with others in this group with low levels of miR-153. Functional studies revealed that miR-153 upregulation increased colorectal cancer invasiveness and resistance to oxaliplatin and cisplatin both in vitro and in vivo. Mechanistic investigations indicated that miR-153 promoted invasiveness indirectly by inducing matrix metalloprotease enzyme 9 production, whereas drug resistance was mediated directly by inhibiting the Forkhead transcription factor Forkhead box O3a (FOXO3a). In support of the latter finding, we found that levels of miR-153 and FOXO3a were inversely correlated in matched human colorectal cancer specimens. Our findings establish key roles for miR-153 overexpression in colorectal cancer progression, rationalizing therapeutic strategies to target expression of this miRNA for colorectal cancer treatment.
Gut | 2016
Hui Ling; Karen Pickard; Cristina Ivan; Claudio Isella; Mariko Ikuo; Richard Mitter; Riccardo Spizzo; Marc D. Bullock; Cornelia Braicu; Valentina Pileczki; Kimberly Vincent; Martin Pichler; Verena Stiegelbauer; Gerald Hoefler; Maria Inês Almeida; Annie Hsiao; Xinna Zhang; John Primrose; Graham Packham; Kevin Liu; Krishna Bojja; Roberta Gafà; Lianchun Xiao; Simona Rossi; Jian H. Song; Ivan Vannini; Francesca Fanini; Scott Kopetz; Patrick A. Zweidler-McKay; Xuemei Wang
Objective MicroRNA (miRNA) expression profile can be used as prognostic marker for human cancers. We aim to explore the significance of miRNAs in colorectal cancer (CRC) metastasis. Design We performed miRNA microarrays using primary CRC tissues from patients with and without metastasis, and validated selected candidates in 85 CRC samples by quantitative real-time PCR (qRT-PCR). We tested metastatic activity of selected miRNAs and identified miRNA targets by prediction algorithms, qRT-PCR, western blot and luciferase assays. Clinical outcomes were analysed in six sets of CRC cases (n=449), including The Cancer Genome Atlas (TCGA) consortium and correlated with miR-224 status. We used the Kaplan–Meier method and log-rank test to assess the difference in survival between patients with low or high levels of miR-224 expression. Results MiR-224 expression increases consistently with tumour burden and microsatellite stable status, and miR-224 enhances CRC metastasis in vitro and in vivo. We identified SMAD4 as a miR-224 target and observed negative correlation (Spearman Rs=−0.44, p<0.0001) between SMAD4 and miR-224 expression in clinical samples. Patients with high miR-224 levels display shorter overall survival in multiple CRC cohorts (p=0.0259, 0.0137, 0.0207, 0.0181, 0.0331 and 0.0037, respectively), and shorter metastasis-free survival (HR 6.51, 95% CI 1.97 to 21.51, p=0.0008). In the TCGA set, combined analysis of miR-224 with SMAD4 expression enhanced correlation with survival (HR 4.12, 95% CI 1.1 to 15.41, p=0.0175). Conclusions MiR-224 promotes CRC metastasis, at least in part, through the regulation of SMAD4. MiR-224 expression in primary CRC, alone or combined with its targets, may have prognostic value for survival of patients with CRC.
Cancers | 2015
Andreia M. Silva; Marc D. Bullock; George A. Calin
Non-coding RNAs have long been associated with cancer development and progression, and since their earliest discovery, their clinical potential in identifying and characterizing the disease has been pursued. Long non-coding (lncRNAs), a diverse class of RNA transcripts >200 nucleotides in length with limited protein coding potential, has been only modestly studied relative to other categories of non-coding RNAs. However, recent data suggests they too may be important players in cancer. In this article, we consider the value of lncRNAs in the clinical setting, and in particular their potential roles as diagnostic and prognostic markers in cancer. Furthermore, we summarize the most significant studies linking lncRNA expression in human biological samples to cancer outcomes. The diagnostic sensitivity, specificity and validity of these non-coding RNA transcripts is compared in the various biological compartments in which they have been detected including tumor tissue, whole body fluids and exosomes.
Oncotarget | 2016
Christopher J. Hanley; Fergus Noble; Matthew Ward; Marc D. Bullock; Cole R. Drifka; Massimiliano Mellone; Antigoni Manousopoulou; Harvey E. Johnston; Annette Hayden; Stephen M. Thirdborough; Yuming Liu; David M. Smith; Toby Mellows; W. John Kao; Spiros D. Garbis; Alex H. Mirnezami; Timothy J. Underwood; Kevin W. Eliceiri; Gareth J. Thomas
Collagen structure has been shown to influence tumor cell invasion, metastasis and clinical outcome in breast cancer. However, it remains unclear how it affects other solid cancers. Here we utilized multi-photon laser scanning microscopy and Second Harmonic Generation to identify alterations to collagen fiber structure within the tumor stroma of head & neck, esophageal and colorectal cancers. Image segmentation algorithms were then applied to quantitatively characterize these morphological changes, showing that elongated collagen fibers significantly correlated with poor clinical outcome (Log Rank p < 0.05). We used TGF-β treatment to model fibroblast conversion to smooth muscle actin SMA-positive cancer associated fibroblasts (CAFs) and found that these cells induce the formation of elongated collagen fibers in vivo. However, proteomic/transcriptomic analysis of SMA-positive CAFs cultured ex-vivo showed significant heterogeneity in the expression of genes with collagen fibril organizing gene ontology. Notably, stratifying patients according to stromal SMA-positivity and collagen fiber elongation was found to provide a highly significant correlation with poor survival in all 3 cancer types (Log Rank p ≤ 0.003). In summary, we show that increased collagen fiber length correlates with poor patient survival in multiple tumor types and that only a sub-set of SMA-positive CAFs can mediate the formation of this collagen structure.
International Journal of Molecular Sciences | 2015
Maria Anna Smolle; Marc D. Bullock; Hui Ling; Martin Pichler; Johannes Haybaeck
Endometrial carcinoma (EC), the second most common form of gynaecological malignancy, can be divided into two distinct sub-types: Type I tumours arise from hyperplastic endometrium and typically effect women around the time of menopause, whereas type II tumours arise in postmenopausal women from atrophic endometrium. Long non-coding RNAs (lncRNAs) are a novel class of non-protein coding molecules that have recently been implicated in the pathogenesis of many types of cancer including gynaecological tumours. Although they play critical physiological roles in cellular metabolism, their expression and function are deregulated in EC compared with paired normal tissue, indicating that they may also participate in tumour initiation and progression. For instance, the lncRNA MALAT-1 is down-regulated in EC samples compared to normal or hyperplastic endometrium, whereas the lncRNA OVAL is down-regulated in type II disease but up-regulated in type I disease. Other notatble lncRNAs such as HOTAIR, H19 and SRA become up-regulated with increasing EC tumour grade and other features associated with poor prognosis. In the current review, we will examine the growing body of evidence linking deregulated lncRNAs with specific biological functions of tumour cells in EC, we will highlight associations between lncRNAs and the molecular pathways implicated in EC tumourigenesis and we will identify critical knowledge gaps that remain to be addressed.
Frontiers in Cell and Developmental Biology | 2015
Rahul Bhome; Marc D. Bullock; Hajir A. Al Saihati; Rebecca W. Goh; John Primrose; A. Emre Sayan; Alex H. Mirnezami
It is well established that the tumor microenvironment (TME) contributes to cancer progression. Stromal cells can be divided into mesenchymal, vascular, and immune. Signaling molecules secreted by the tumor corrupts these cells to create “activated” stroma. Equally, the extracellular matrix (ECM) contributes to tumor development and invasion by forming a biologically active scaffold. In this review we describe the key structural, cellular and signaling components of the TME with a perspective on stromal soluble factors and microRNAs (miRNAs).
Non-Coding RNA | 2015
Marc D. Bullock; Andreia M. Silva; Pinar Kanlikilicer-Unaldi; Justyna Filant; Mohammed H. Rashed; Anil K. Sood; Gabriel Lopez-Berestein; George A. Calin
Non-coding RNAs, such as microRNAs and long non-coding RNAs, are important regulatory molecules which are corrupted in cancer, often in a tissue and stage specific manner. Accumulated data suggests that these promising biomarkers, may also form the basis of novel targeted therapeutic strategies. The role of exosomes in cancer development and metastasis pathways is also increasingly well described. These endosome derived extracellular vesicles which are trafficked horizontally between tumor cells, and vertically between tumor cells and the surrounding microenvironment, carry bioactive cargos, which can reprogram the phenotype of recipient cells with important oncogenic consequences. Exosomes are enriched with non-coding RNA content. Within exosomes, non-coding RNAs are secreted into the peripheral circulation and other bodily fluids where they are protected from enzymatic degradation by the surrounding phospholipid membrane. Exosomes are therefore a highly promising source of diagnostic and prognostic material in cancer. Furthermore, as exosomes are natural ncRNA carriers, they may be adapted for the purpose of drug delivery by the introduction of exogenous ncRNAs or by manipulating their endogenous ncRNA content. In the current review, we will explore these highly clinically relevant themes by examining the roles of exosomal ncRNAs in cancer diagnostics, prognostics and therapy.
Urologic Clinics of North America | 2016
Hui Ling; Lisa Krassnig; Marc D. Bullock; Martin Pichler
Testicular cancer processes a unique and clear miRNA expression signature. This differentiates testicular cancer from most other cancer types, which are usually more ambiguous when assigning miRNA patterns. As such, testicular cancer may represent a unique cancer type in which miRNAs find their use as biomarkers for cancer diagnosis and prognosis, with a potential to surpass the current available markers usually with low sensitivity. In this review, we present literature findings on miRNAs associated with testicular cancer, and discuss their potential diagnostic and prognostic values, as well as their potential as indicators of drug response in patients with testicular cancer.
Journal of the National Cancer Institute | 2018
Christopher J. Hanley; Massimiliano Mellone; Kirsty Ford; Steve Thirdborough; Toby Mellows; Steven J. Frampton; David M. Smith; Elena Harden; Cedric Szyndralewiez; Marc D. Bullock; Fergus Noble; Karwan A. Moutasim; Emma King; Pandurangan Vijayanand; Alex H. Mirnezami; Timothy J. Underwood; Christian Ottensmeier; Gareth J. Thomas
Abstract Background Cancer-associated fibroblasts (CAFs) are tumor-promoting and correlate with poor survival in many cancers, which has led to their emergence as potential therapeutic targets. However, effective methods to manipulate these cells clinically have yet to be developed. Methods CAF accumulation and prognostic significance in head and neck cancer (oral, n = 260; oropharyngeal, n = 271), and colorectal cancer (n = 56) was analyzed using immunohistochemistry. Mechanisms regulating fibroblast-to-myofibroblast transdifferentiation were investigated in vitro using RNA interference/pharmacological inhibitors followed by polymerase chain reaction (PCR), immunoblotting, immunofluorescence, and functional assays. RNA sequencing/bioinformatics and immunohistochemistry were used to analyze NAD(P)H Oxidase-4 (NOX4) expression in different human tumors. NOX4’s role in CAF-mediated tumor progression was assessed in vitro, using CAFs from multiple tissues in Transwell and organotypic culture assays, and in vivo, using xenograft (n = 9–15 per group) and isograft (n = 6 per group) tumor models. All statistical tests were two-sided. Results Patients with moderate/high levels of myofibroblastic-CAF had a statistically significant decrease in cancer-specific survival rates in each cancer type analyzed (hazard ratios [HRs] = 1.69–7.25, 95% confidence intervals [CIs] = 1.11 to 31.30, log-rank P ≤ .01). Fibroblast-to-myofibroblast transdifferentiation was dependent on a delayed phase of intracellular reactive oxygen species, generated by NOX4, across different anatomical sites and differentiation stimuli. A statistically significant upregulation of NOX4 expression was found in multiple human cancers (P < .001), strongly correlating with myofibroblastic-CAFs (r = 0.65–0.91, adjusted P < .001). Genetic/pharmacological inhibition of NOX4 was found to revert the myofibroblastic-CAF phenotype ex vivo (54.3% decrease in α-smooth muscle actin [α-SMA], 95% CI = 10.6% to 80.9%, P = .009), prevent myofibroblastic-CAF accumulation in vivo (53.2%–79.0% decrease in α-SMA across different models, P ≤ .02) and slow tumor growth (30.6%–64.0% decrease across different models, P ≤ .04). Conclusions These data suggest that pharmacological inhibition of NOX4 may have broad applicability for stromal targeting across cancer types.