Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc Damelin is active.

Publication


Featured researches published by Marc Damelin.


Nature Reviews Drug Discovery | 2009

Tumour-initiating cells: challenges and opportunities for anticancer drug discovery

Bin-Bing S. Zhou; Haiying Zhang; Marc Damelin; Kenneth G. Geles; Justin C. Grindley; Peter B. Dirks

The hypothesis that cancer is driven by tumour-initiating cells (popularly known as cancer stem cells) has recently attracted a great deal of attention, owing to the promise of a novel cellular target for the treatment of haematopoietic and solid malignancies. Furthermore, it seems that tumour-initiating cells might be resistant to many conventional cancer therapies, which might explain the limitations of these agents in curing human malignancies. Although much work is still needed to identify and characterize tumour-initiating cells, efforts are now being directed towards identifying therapeutic strategies that could target these cells. This Review considers recent advances in the cancer stem cell field, focusing on the challenges and opportunities for anticancer drug discovery.


Molecular Cancer Therapeutics | 2013

Long-term Tumor Regression Induced by an Antibody–Drug Conjugate That Targets 5T4, an Oncofetal Antigen Expressed on Tumor-Initiating Cells

Puja Sapra; Marc Damelin; John F. DiJoseph; Kimberly Marquette; Kenneth G. Geles; Jonathan Golas; Maureen Dougher; Bitha Narayanan; Andreas Giannakou; Kiran Khandke; Russell Dushin; Elana Ernstoff; Judy Lucas; Mauricio Leal; George Hu; Christopher J. O'Donnell; Lioudmila Tchistiakova; Robert T. Abraham; Hans-Peter Gerber

Antibody–drug conjugates (ADC) represent a promising therapeutic modality for the clinical management of cancer. We sought to develop a novel ADC that targets 5T4, an oncofetal antigen expressed on tumor-initiating cells (TIC), which comprise the most aggressive cell population in the tumor. We optimized an anti-5T4 ADC (A1mcMMAF) by sulfydryl-based conjugation of the humanized A1 antibody to the tubulin inhibitor monomethylauristatin F (MMAF) via a maleimidocaproyl linker. A1mcMMAF exhibited potent in vivo antitumor activity in a variety of tumor models and induced long-term regressions for up to 100 days after the last dose. Strikingly, animals showed pathologic complete response in each model with doses as low as 3 mg antibody/kg dosed every 4 days. In a non–small cell lung cancer patient-derived xenograft model, in which 5T4 is preferentially expressed on the less differentiated tumor cells, A1mcMMAF treatment resulted in sustained tumor regressions and reduced TIC frequency. These results highlight the potential of ADCs that target the most aggressive cell populations within tumors, such as TICs. In exploratory safety studies, A1mcMMAF exhibited no overt toxicities when administered to cynomolgus monkeys at doses up to 10 mg antibody/kg/cycle × 2 and displayed a half-life of 5 days. The preclinical efficacy and safety data established a promising therapeutic index that supports clinical testing of A1mcMMAF. Mol Cancer Ther; 12(1); 38–47. ©2012 AACR.


Cancer Research | 2011

Delineation of a Cellular Hierarchy in Lung Cancer Reveals an Oncofetal Antigen Expressed on Tumor-Initiating Cells

Marc Damelin; Kenneth G. Geles; Ping Yuan; Michelle Baxter; Jonathon Golas; John F. DiJoseph; Maha Karnoub; Shuguang Huang; Veronica Diesl; Carmen Behrens; Sung E. Choe; Carol Rios; Latha Sridharan; Maureen Dougher; Arthur Kunz; Philip Ross Hamann; Deborah Evans; Douglas Armellino; Kiran Khandke; Kimberly Marquette; Lioudmila Tchistiakova; Erwin R. Boghaert; Robert T. Abraham; Ignacio I. Wistuba; Bin-Bing S. Zhou

Poorly differentiated tumors in non-small cell lung cancer (NSCLC) have been associated with shorter patient survival and shorter time to recurrence following treatment. Here, we integrate multiple experimental models with clinicopathologic analysis of patient tumors to delineate a cellular hierarchy in NSCLC. We show that the oncofetal protein 5T4 is expressed on tumor-initiating cells and associated with worse clinical outcome in NSCLC. Coexpression of 5T4 and factors involved in the epithelial-to-mesenchymal transition were observed in undifferentiated but not in differentiated tumor cells. Despite heterogeneous expression of 5T4 in NSCLC patient-derived xenografts, treatment with an anti-5T4 antibody-drug conjugate resulted in complete and sustained tumor regression. Thus, the aggressive growth of heterogeneous solid tumors can be blocked by therapeutic agents that target a subpopulation of cells near the top of the cellular hierarchy.


Journal of Molecular Biology | 2013

Comprehensive interrogation of a minimalist synthetic CDR-H3 library and its ability to generate antibodies with therapeutic potential.

Ciara M. Mahon; Matthew Lambert; Jacob Glanville; Jason Wade; Brian J. Fennell; Mark Rh Krebs; Douglas Armellino; Sharon Yang; Xuemei Liu; Cliona M. O'Sullivan; Bénédicte Autin; Katarzyna Oficjalska; Laird Bloom; Janet E. Paulsen; Davinder Gill; Marc Damelin; Orla Cunningham; William J. J. Finlay

We have generated large libraries of single-chain Fv antibody fragments (>10(10) transformants) containing unbiased amino acid diversity that is restricted to the central combining site of the stable, well-expressed DP47 and DPK22 germline V-genes. Library WySH2A was constructed to examine the potential for synthetic complementarity-determining region (CDR)-H3 diversity to act as the lone source of binding specificity. Library WySH2B was constructed to assess the necessity for diversification in both the H3 and L3. Both libraries provided diverse, specific antibodies, yielding a total of 243 unique hits against 7 different targets, but WySH2B produced fewer hits than WySH2A when selected in parallel. WySH2A also consistently produced hits of similar quality to WySH2B, demonstrating that the diversification of the CDR-L3 reduces library fitness. Despite the absence of deliberate bias in the library design, CDR length was strongly associated with the number of hits produced, leading to a functional loop length distribution profile that mimics the biases observed in the natural repertoire. A similar trend was also observed for the CDR-L3. After target selections, several key amino acids were enriched in the CDR-H3 (e.g., small and aromatic residues) while others were reduced (e.g., strongly charged residues) in a manner that was specific to position, preferentially occurred in CDR-H3 stem positions, and tended towards residues associated with loop stabilization. As proof of principle for the WySH2 libraries to produce viable lead candidate antibodies, 114 unique hits were produced against Delta-like ligand 4 (DLL4). Leads exhibited nanomolar binding affinities, highly specific staining of DLL4+ cells, and biochemical neutralization of DLL4-NOTCH1 interaction.


Clinical Cancer Research | 2015

Anti-EFNA4 Calicheamicin Conjugates Effectively Target Triple-Negative Breast and Ovarian Tumor-Initiating Cells To Result In Sustained Tumor Regressions

Marc Damelin; Alexander John Bankovich; Albert H. Park; Jorge Aguilar; Wade C. Anderson; Marianne Santaguida; Monette Aujay; Sarah Fong; Kiran Khandke; Virginia Pulito; Elana Ernstoff; Paul Anthony Escarpe; Jeffrey Bernstein; Marybeth A. Pysz; Wenyan Zhong; Erik Upeslacis; Judy Lucas; Justin Lucas; Timothy Nichols; Kathryn Loving; Orit Foord; Johannes Hampl; Robert A. Stull; Frank Barletta; Hadi Falahatpisheh; Puja Sapra; Hans-Peter Gerber; Scott J. Dylla

Purpose: Triple-negative breast cancer (TNBC) and ovarian cancer each comprise heterogeneous tumors, for which current therapies have little clinical benefit. Novel therapies that target and eradicate tumor-initiating cells (TIC) are needed to significantly improve survival. Experimental Design: A panel of well-annotated patient-derived xenografts (PDX) was established, and surface markers that enriched for TIC in specific tumor subtypes were empirically determined. The TICs were queried for overexpressed antigens, one of which was selected to be the target of an antibody–drug conjugate (ADC). The efficacy of the ADC was evaluated in 15 PDX models to generate hypotheses for patient stratification. Results: We herein identified E-cadherin (CD324) as a surface antigen able to reproducibly enrich for TIC in well-annotated, low-passage TNBC and ovarian cancer PDXs. Gene expression analysis of TIC led to the identification of Ephrin-A4 (EFNA4) as a prospective therapeutic target. An ADC comprising a humanized anti-EFNA4 monoclonal antibody conjugated to the DNA-damaging agent calicheamicin achieved sustained tumor regressions in both TNBC and ovarian cancer PDX in vivo. Non-claudin low TNBC tumors exhibited higher expression and more robust responses than other breast cancer subtypes, suggesting a specific translational application for tumor subclassification. Conclusions: These findings demonstrate the potential of PF-06647263 (anti–EFNA4-ADC) as a first-in-class compound designed to eradicate TIC. The use of well-annotated PDX for drug discovery enabled the identification of a novel TIC target, pharmacologic evaluation of the compound, and translational studies to inform clinical development. Clin Cancer Res; 21(18); 4165–73. ©2015 AACR.


Science Translational Medicine | 2017

A PTK7-targeted antibody-drug conjugate reduces tumor-initiating cells and induces sustained tumor regressions

Marc Damelin; Alexander John Bankovich; Jeffrey Bernstein; Justin Lucas; Liang Chen; Samuel Williams; Albert H. Park; Jorge Aguilar; Elana Ernstoff; Manoj Charati; Russell Dushin; Monette Aujay; Christina R. Lee; Hanna Ramoth; Milly Milton; Johannes Hampl; Sasha Lazetic; Virginia Pulito; Edward Rosfjord; Yongliang Sun; Lindsay King; Frank Barletta; Alison Betts; Magali Guffroy; Hadi Falahatpisheh; Christopher J. O’Donnell; Robert A. Stull; Marybeth A. Pysz; Paul Anthony Escarpe; David R. Liu

PTK7 is a tumor-initiating cell antigen, which can be targeted with an antibody-drug conjugate to confer sustained tumor regressions. Initiating an antitumor attack Cancer is notorious for relapsing after treatment, making it difficult to eradicate from a patient’s body. Such relapses are driven by tumor-initiating cells, a type of stem cells that give rise to tumors. Damelin et al. determined that a protein called PTK7 is frequently present on tumor-initiating cells and developed an antibody-drug conjugate for targeting it. The authors demonstrated the effectiveness of this therapy in mouse models of several tumor types and confirmed that it reduces tumor-initiating cells and outperforms standard chemotherapy. The antibody-drug conjugate also had some unexpected benefits, reducing tumor angiogenesis and promoting antitumor immunity, all of which may contribute to its effectiveness. Disease relapse after treatment is common in triple-negative breast cancer (TNBC), ovarian cancer (OVCA), and non–small cell lung cancer (NSCLC). Therapies that target tumor-initiating cells (TICs) should improve patient survival by eliminating the cells that can drive tumor recurrence and metastasis. We demonstrate that protein tyrosine kinase 7 (PTK7), a highly conserved but catalytically inactive receptor tyrosine kinase in the Wnt signaling pathway, is enriched on TICs in low-passage TNBC, OVCA, and NSCLC patient–derived xenografts (PDXs). To deliver a potent anticancer drug to PTK7-expressing TICs, we generated a targeted antibody-drug conjugate (ADC) composed of a humanized anti-PTK7 monoclonal antibody, a cleavable valine-citrulline–based linker, and Aur0101, an auristatin microtubule inhibitor. The PTK7-targeted ADC induced sustained tumor regressions and outperformed standard-of-care chemotherapy. Moreover, the ADC specifically reduced the frequency of TICs, as determined by serial transplantation experiments. In addition to reducing the TIC frequency, the PTK7-targeted ADC may have additional antitumor mechanisms of action, including the inhibition of angiogenesis and the stimulation of immune cells. Together, these preclinical data demonstrate the potential for the PTK7-targeted ADC to improve the long-term survival of cancer patients.


Pharmaceutical Research | 2015

Evolving Strategies for Target Selection for Antibody-Drug Conjugates.

Marc Damelin; Wenyan Zhong; Jeremy Myers; Puja Sapra

Antibody-drug conjugates (ADCs) represent a promising modality for the treatment of cancer. The therapeutic strategy is to deliver a potent drug preferentially to the tumor and not normal tissues by attaching the drug to an antibody that recognizes a tumor antigen. The selection of antigen targets is critical to enabling a therapeutic window for the ADC and has proven to be surprisingly complex. We surveyed the tumor and normal tissue expression profiles of the targets of ADCs currently in clinical development. Our analysis demonstrates a surprisingly broad range of expression profiles and the inability to formalize any optimal parameters for an ADC target. In this context, we discuss additional considerations for ADC target selection, including interdependencies among biophysical properties of the drug, biological functions of the target and strategies for clinical development. The TPBG (5T4) oncofetal antigen and the anti-TPBG ADC A1-mcMMAF are highlighted to demonstrate the relevance of the target’s biological function. Emerging platform technologies and novel biological insights are expanding ADC target space and transforming strategies for target selection.


Cancer Research | 2015

Breast cancer cells respond differentially to modulation of TGFβ2 signaling after exposure to chemotherapy or hypoxia.

Siobhan O'Brien; Liang Chen; Wenyan Zhong; Douglas Armellino; Jiyang Yu; Christine Loreth; Marc Damelin

Intratumoral heterogeneity helps drive the selection for diverse therapy-resistant cell populations. In this study, we demonstrate the coexistence of two therapy-resistant populations with distinct properties that are reproducibly enriched under conditions that characterize tumor pathophysiology. Breast cancer cells that survived chemotherapy or hypoxia were enriched for cells expressing the major hyaluronic acid receptor CD44. However, only CD44(hi) cells that survived chemotherapy exhibited cancer stem cell (CSC) phenotypes based on growth potential and gene expression signatures that represent oncogenic signaling and metastatic prowess. Strikingly, we identified TGFβ2 as a key growth promoter of CD44(hi) cells that survived chemotherapy but also as a growth inhibitor of cells that survived hypoxia. Expression of the TGFβ receptor TGFβR1 and its effector molecule SMAD4 was required for enrichment of CD44(hi) cells exposed to the chemotherapeutic drug epirubicin, which suggests a feed-forward loop to enrich for and enhance the function of surviving CSCs. Our results reveal context-dependent effects of TGFβ2 signaling in the same tumor at the same time. The emergence of distinct resistant tumor cell populations as a consequence of prior therapeutic intervention or microenvironmental cues has significant implications for the responsiveness of recurring tumors to therapy.


Molecular Pharmaceutics | 2015

Phenotype of TPBG Gene Replacement in the Mouse and Impact on the Pharmacokinetics of an Antibody-Drug Conjugate.

George Hu; Mauricio Leal; Qingcong Lin; Timothy Affolter; Puja Sapra; Brian Bates; Marc Damelin

The use of predictive preclinical models in drug discovery is critical for compound selection, optimization, preclinical to clinical translation, and strategic decision-making. Trophoblast glycoprotein (TPBG), also known as 5T4, is the therapeutic target of several anticancer agents currently in clinical development, largely due to its high expression in tumors and low expression in normal adult tissues. In this study, mice were engineered to express human TPBG under endogenous regulatory sequences by replacement of the murine Tpbg coding sequence. The gene replacement was considered functional since the hTPBG knockin (hTPBG-KI) mice did not exhibit clinical observations or histopathological phenotypes that are associated with Tpbg gene deletion, except in rare instances. The expression of hTPBG in certain epithelial cell types and in different microregions of the brain and spinal cord was consistent with previously reported phenotypes and expression patterns. In pharmacokinetic studies, the exposure of a clinical-stage anti-TPBG antibody-drug conjugate (ADC), A1mcMMAF, was lower in hTPBG-KI versus wild-type animals, which was evidence of target-related increased clearance in hTPBG-KI mice. Thus, the hTPBG-KI mice constitute an improved system for pharmacology studies with current and future TPBG-targeted therapies and can generate more precise pharmacokinetic and pharmacodynamic data. In general the strategy of employing gene replacement to improve pharmacokinetic assessments should be broadly applicable to the discovery and development of ADCs and other biotherapeutics.


Translational Oncology | 2016

Upregulation of RNA Processing Factors in Poorly Differentiated Lung Cancer Cells.

Kenneth G. Geles; Wenyan Zhong; Siobhan K. O’Brien; Michelle Baxter; Christine Loreth; Diego Pallares; Marc Damelin

Intratumoral heterogeneity in non–small cell lung cancer (NSCLC) has been appreciated at the histological and cellular levels, but the association of less differentiated pathology with poor clinical outcome is not understood at the molecular level. Gene expression profiling of intact human tumors fails to reveal the molecular nature of functionally distinct epithelial cell subpopulations, in particular the tumor cells that fuel tumor growth, metastasis, and disease relapse. We generated primary serum-free cultures of NSCLC and then exposed them to conditions known to promote differentiation: the air-liquid interface (ALI) and serum. The transcriptional network of the primary cultures was associated with stem cells, indicating a poorly differentiated state, and worse overall survival of NSCLC patients. Strikingly, the overexpression of RNA splicing and processing factors was a prominent feature of the poorly differentiated cells and was also observed in clinical datasets. A genome-wide analysis of splice isoform expression revealed many alternative splicing events that were specific to the differentiation state of the cells, including an unexpectedly high frequency of events on chromosome 19. The poorly differentiated cells exhibited alternative splicing in many genes associated with tumor progression, as exemplified by the preferential expression of the short isoform of telomeric repeat-binding factor 1 (TERF1), also known as Pin2. Our findings demonstrate the utility of the ALI method for probing the molecular mechanisms that underlie NSCLC pathogenesis and provide novel insight into posttranscriptional mechanisms in poorly differentiated lung cancer cells.

Collaboration


Dive into the Marc Damelin's collaboration.

Researchain Logo
Decentralizing Knowledge