Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marc R. Mansour is active.

Publication


Featured researches published by Marc R. Mansour.


Journal of Clinical Investigation | 2008

Insertional mutagenesis combined with acquired somatic mutations causes leukemogenesis following gene therapy of SCID-X1 patients

Steven J. Howe; Marc R. Mansour; Kerstin Schwarzwaelder; Cynthia C. Bartholomae; Michael Hubank; Helena Kempski; Martijn H. Brugman; Karin Pike-Overzet; Stephen Chatters; Dick de Ridder; Kimberly Gilmour; Stuart Adams; Susannah I Thornhill; Kathryn L. Parsley; Frank J. T. Staal; Rosemary E. Gale; David C. Linch; Jinhua Bayford; Lucie Brown; Michelle Quaye; Christine Kinnon; Philip Ancliff; David Webb; Manfred Schmidt; Christof von Kalle; H. Bobby Gaspar; Adrian J. Thrasher

X-linked SCID (SCID-X1) is amenable to correction by gene therapy using conventional gammaretroviral vectors. Here, we describe the occurrence of clonal T cell acute lymphoblastic leukemia (T-ALL) promoted by insertional mutagenesis in a completed gene therapy trial of 10 SCID-X1 patients. Integration of the vector in an antisense orientation 35 kb upstream of the protooncogene LIM domain only 2 (LMO2) caused overexpression of LMO2 in the leukemic clone. However, leukemogenesis was likely precipitated by the acquisition of other genetic abnormalities unrelated to vector insertion, including a gain-of-function mutation in NOTCH1, deletion of the tumor suppressor gene locus cyclin-dependent kinase 2A (CDKN2A), and translocation of the TCR-beta region to the STIL-TAL1 locus. These findings highlight a general toxicity of endogenous gammaretroviral enhancer elements and also identify a combinatorial process during leukemic evolution that will be important for risk stratification and for future protocol design.


Nature | 2007

Chromosomally unstable mouse tumours have genomic alterations similar to diverse human cancers

Richard S. Maser; Bhudipa Choudhury; Peter J. Campbell; Bin Feng; Kwok-Kin Wong; Alexei Protopopov; Jennifer O'Neil; Alejandro Gutierrez; Elena Ivanova; Ilana Perna; Eric Lin; Vidya Mani; Shan Jiang; Kate McNamara; Sara Zaghlul; Sarah Edkins; Claire Stevens; Cameron Brennan; Eric Martin; Ruprecht Wiedemeyer; Omar Kabbarah; Cristina Nogueira; Gavin Histen; Marc R. Mansour; Veronique Duke; Letizia Foroni; Adele K. Fielding; Anthony H. Goldstone; Jacob M. Rowe; Yaoqi A. Wang

Highly rearranged and mutated cancer genomes present major challenges in the identification of pathogenetic events driving the neoplastic transformation process. Here we engineered lymphoma-prone mice with chromosomal instability to assess the usefulness of mouse models in cancer gene discovery and the extent of cross-species overlap in cancer-associated copy number aberrations. Along with targeted re-sequencing, our comparative oncogenomic studies identified FBXW7 and PTEN to be commonly deleted both in murine lymphomas and in human T-cell acute lymphoblastic leukaemia/lymphoma (T-ALL). The murine cancers acquire widespread recurrent amplifications and deletions targeting loci syntenic to those not only in human T-ALL but also in diverse human haematopoietic, mesenchymal and epithelial tumours. These results indicate that murine and human tumours experience common biological processes driven by orthologous genetic events in their malignant evolution. The highly concordant nature of genomic events encourages the use of genomically unstable murine cancer models in the discovery of biological driver events in the human oncogenome.


Science | 2014

An oncogenic super-enhancer formed through somatic mutation of a noncoding intergenic element

Marc R. Mansour; Brian J. Abraham; Lars Anders; Alla Berezovskaya; Alejandro Gutierrez; Adam D. Durbin; Julia Etchin; Lee N. Lawton; Stephen E. Sallan; Lewis B. Silverman; Mignon L. Loh; Stephen P. Hunger; Takaomi Sanda; Richard A. Young; A. Thomas Look

In certain human cancers, the expression of critical oncogenes is driven from large regulatory elements, called super-enhancers, that recruit much of the cell’s transcriptional apparatus and are defined by extensive acetylation of histone H3 lysine 27 (H3K27ac). In a subset of T-cell acute lymphoblastic leukemia (T-ALL) cases, we found that heterozygous somatic mutations are acquired that introduce binding motifs for the MYB transcription factor in a precise noncoding site, which creates a super-enhancer upstream of the TAL1 oncogene. MYB binds to this new site and recruits its H3K27 acetylase–binding partner CBP, as well as core components of a major leukemogenic transcriptional complex that contains RUNX1, GATA-3, and TAL1 itself. Additionally, most endogenous super-enhancers found in T-ALL cells are occupied by MYB and CBP, which suggests a general role for MYB in super-enhancer initiation. Thus, this study identifies a genetic mechanism responsible for the generation of oncogenic super-enhancers in malignant cells. Leukemia-associated mutations drive cell growth by creating a powerful transcriptional enhancer upstream of an oncogene. [Also see Perspective by Vähärautio and Taipale] A super-enhancer in leukemia development Human cancer genome projects have provided a wealth of information about mutations that reside within the coding regions of genes and drive tumor growth by functionally altering protein products. However, this mutational portrait of cancer is incomplete: A growing number of mutations are being found within gene regulatory regions. Mansour et al. present an intriguing example of this in a study of a childhood cancer, T-cell acute lymphoblastic leukemia (see the Perspective by Vähärautio and Taipale). An oncogene known to drive the growth of this cancer is expressed at high levels in the leukemic cells because the cells harbor mutations that create a powerful superenhancer (a DNA sequence that activates transcription) upstream of the oncogene. Science, this issue p. 1373; see also p. 1291


Blood | 2009

T-cell acute lymphoblastic leukemia in adults: clinical features, immunophenotype, cytogenetics, and outcome from the large randomized prospective trial (UKALL XII/ECOG 2993)

David I. Marks; Elisabeth Paietta; Anthony V. Moorman; Susan M. Richards; Georgina Buck; Gordon W. Dewald; Adolfo A. Ferrando; Adele K. Fielding; Anthony H. Goldstone; Rhett P. Ketterling; Mark R. Litzow; Selina M. Luger; Andrew McMillan; Marc R. Mansour; Jacob M. Rowe; Martin S. Tallman; Hillard M. Lazarus

The biology and outcome of adult T-cell acute lymphoblastic leukemia are poorly understood. We present here the clinical and biologic features of 356 patients treated uniformly on the prospective trial (UKALL XII/ECOG 2993) with the aim of describing the outcome and identifying prognostic factors. Complete remission was obtained in 94% of patients, and 48% survived 5 years. Positivity of blasts for CD1a and lack of expression of CD13 were associated with better survival (P = .01 and < .001, respectively). NOTCH1 and CDKN2A mutations were seen in 61% and 42% of those tested. Complex cytogenetic abnormalities were associated with poorer survival (19% vs 51% at 5 years, P = .006). Central nervous system involvement at diagnosis did not affect survival (47% vs 48%, P = not significant). For 99 patients randomized between autograft and chemotherapy, 5-year survival was 51% in each arm. Patients with a matched sibling donor had superior 5-year survival to those without donors (61% vs 46%, chi(2), P = .02); this was the result of less relapse (25% vs 51% at 5 years, P < .001). Only 8 of 123 relapsed patients survive. This study provides a baseline for trials of new drugs, such as nelarabine, and may allow risk-adapted therapy in patients with poor-prognosis T-cell ALL.


Blood | 2009

Structure of the Notch1-negative regulatory region: implications for normal activation and pathogenic signaling in T-ALL

Wendy R. Gordon; Mondeepa Roy; Didem Vardar-Ulu; Megan Garfinkel; Marc R. Mansour; Stephen C. Blacklow

Proteolytic resistance of Notch prior to ligand binding depends on the structural integrity of a negative regulatory region (NRR) of the receptor that immediately precedes the transmembrane segment. The NRR includes the 3 Lin12/Notch repeats and the juxtamembrane heterodimerization domain, the region of Notch1 most frequently mutated in T-cell acute lymphoblastic leukemia lymphoma (T-ALL). Here, we report the x-ray structure of the Notch1 NRR in its autoinhibited conformation. A key feature of the Notch1 structure that maintains its closed conformation is a conserved hydrophobic plug that sterically occludes the metalloprotease cleavage site. Crystal packing interactions involving a highly conserved, exposed face on the third Lin12/Notch repeat suggest that this site may normally be engaged in intermolecular or intramolecular protein-protein interactions. The majority of known T-ALL-associated point mutations map to residues in the hydrophobic interior of the Notch1 NRR. A novel mutation (H1545P), which alters a residue at the crystal-packing interface, leads to ligand-independent increases in signaling in reporter gene assays despite only mild destabilization of the NRR, suggesting that it releases the autoinhibitory clamp on the heterodimerization domain imposed by the Lin12/Notch repeats. The Notch1 NRR structure should facilitate a search for antibodies or compounds that stabilize the autoinhibited conformation.


Leukemia | 2013

Antileukemic activity of nuclear export inhibitors that spare normal hematopoietic cells

Julia Etchin; Qi Sun; Alex Kentsis; Alicia Farmer; Zi Chao Zhang; Takaomi Sanda; Marc R. Mansour; C Barcelo; Dilara McCauley; Michael Kauffman; Sharon Shacham; Amanda L. Christie; Andrew L. Kung; Scott J. Rodig; Yuh Min Chook; A T Look

Drugs that target the chief mediator of nuclear export, chromosome region maintenance 1 protein (CRM1) have potential as therapeutics for leukemia, but existing CRM1 inhibitors show variable potencies and a broad range of cytotoxic effects. Here, we report the structural analysis and antileukemic activity of a new generation of small-molecule inhibitors of CRM1. Designated selective inhibitors of nuclear export (SINE), these compounds were developed using molecular modeling to screen a small virtual library of compounds against the nuclear export signal (NES) groove of CRM1. The 2.2-Å crystal structure of the CRM1-Ran-RanBP1 complex bound to KPT-251, a representative molecule of this class of inhibitors, shows that the drug occupies part of the groove in CRM1 that is usually occupied by the NES, but penetrates much deeper into the groove and blocks CRM1-directed protein export. SINE inhibitors exhibit potent antileukemic activity, inducing apoptosis at nanomolar concentrations in a panel of 14 human acute myeloid leukemia (AML) cell lines representing different molecular subtypes of the disease. When administered orally to immunodeficient mice engrafted with human AML cells, KPT-251 had potent antileukemic activity with negligible toxicity to normal hematopoietic cells. Thus, KPT-SINE CRM1 antagonists represent a novel class of drugs that warrant further testing in AML patients.


Blood | 2014

Notch signaling: switching an oncogene to a tumor suppressor

Camille Lobry; Philmo Oh; Marc R. Mansour; A T Look; Iannis Aifantis

The Notch signaling pathway is a regulator of self-renewal and differentiation in several tissues and cell types. Notch is a binary cell-fate determinant, and its hyperactivation has been implicated as oncogenic in several cancers including breast cancer and T-cell acute lymphoblastic leukemia (T-ALL). Recently, several studies also unraveled tumor-suppressor roles for Notch signaling in different tissues, including tissues where it was before recognized as an oncogene in specific lineages. Whereas involvement of Notch as an oncogene in several lymphoid malignancies (T-ALL, B-chronic lymphocytic leukemia, splenic marginal zone lymphoma) is well characterized, there is growing evidence involving Notch signaling as a tumor suppressor in myeloid malignancies. It therefore appears that Notch signaling pathways oncogenic or tumor-suppressor abilities are highly context dependent. In this review, we summarize and discuss latest advances in the understanding of this dual role in hematopoiesis and the possible consequences for the treatment of hematologic malignancies.


Blood | 2009

WT1 mutations in T-ALL

Valeria Tosello; Marc R. Mansour; Kelly Barnes; Maddalena Paganin; Maria Luisa Sulis; Sarah Jenkinson; Christopher Allen; Rosemary E. Gale; David C. Linch; Teresa Palomero; Pedro J. Real; Vundavalli V. Murty; Xiaopan Yao; Susan M. Richards; Anthony H. Goldstone; Jacob M. Rowe; Giuseppe Basso; Peter H. Wiernik; Elisabeth Paietta; Rob Pieters; Martin A. Horstmann; Jules P.P. Meijerink; Adolfo A. Ferrando

The molecular mechanisms involved in disease progression and relapse in T-cell acute lymphoblastic leukemia (T-ALL) are poorly understood. We used single nucleotide polymorphism array analysis to analyze paired diagnostic and relapsed T-ALL samples to identify recurrent genetic alterations in T-ALL. This analysis showed that diagnosis and relapsed cases have common genetic alterations, but also that relapsed samples frequently lose chromosomal markers present at diagnosis, suggesting that relapsed T-ALL emerges from an ancestral clone different from the major leukemic population at diagnosis. In addition, we identified deletions and associated mutations in the WT1 tumor suppressor gene in 2 of 9 samples. Subsequent analysis showed WT1 mutations in 28 of 211 (13.2%) of pediatric and 10 of 85 (11.7%) of adult T-ALL cases. WT1 mutations present in T-ALL are predominantly heterozygous frameshift mutations resulting in truncation of the C-terminal zinc finger domains of this transcription factor. WT1 mutations are most prominently found in T-ALL cases with aberrant rearrangements of the oncogenic TLX1, TLX3, and HOXA transcription factor oncogenes. Survival analysis demonstrated that WT1 mutations do not confer adverse prognosis in pediatric and adult T-ALL. Overall, these results identify the presence of WT1 mutations as a recurrent genetic alteration in T-ALL.


British Journal of Haematology | 2013

KPT-330 inhibitor of CRM1 (XPO1)-mediated nuclear export has selective anti-leukaemic activity in preclinical models of T-cell acute lymphoblastic leukaemia and acute myeloid leukaemia

Julia Etchin; Takaomi Sanda; Marc R. Mansour; Alex Kentsis; Joan Montero; Bonnie Thi Le; Amanda L. Christie; Dilara McCauley; Scott J. Rodig; Michael Kauffman; Sharon Shacham; Richard Stone; Anthony Letai; Andrew L. Kung; A. Thomas Look

This study explored the anti‐leukaemic efficacy of novel irreversible inhibitors of the major nuclear export receptor, chromosome region maintenance 1 (CRM1, also termed XPO1). We found that these novel CRM1 antagonists, termed SINE (Selective Inhibitors of Nuclear Export), induced rapid apoptosis at low nanomolar concentrations in a panel of 14 human T‐cell acute lymphoblastic leukaemia (T‐ALL) cell lines representing different molecular subtypes of the disease. To assess in vivo anti‐leukaemia cell activity, we engrafted immunodeficient mice intravenously with the human T‐ALL MOLT‐4 cells, which harbour activating mutations of NOTCH1 and NRAS as well as loss of function of the CDKN2A, PTEN and TP53 tumour suppressors and express a high level of oncogenic transcription factor TAL1. Importantly, we examined the in vivo anti‐leukaemic efficacy of the clinical SINE compound KPT‐330 against T‐ALL and acute myeloid leukaemia (AML) cells. These studies demonstrated striking in vivo activity of KPT‐330 against T‐ALL and AML cells, with little toxicity to normal murine haematopoietic cells. Taken together, our results show that SINE CRM1 antagonists represent promising ‘first‐in‐class’ drugs with a novel mechanism of action and wide therapeutic index, and imply that drugs of this class show promise for the targeted therapy of T‐ALL and AML.


Journal of Clinical Oncology | 2009

Prognostic Implications of NOTCH1 and FBXW7 Mutations in Adults With T-Cell Acute Lymphoblastic Leukemia Treated on the MRC UKALLXII/ECOG E2993 Protocol

Marc R. Mansour; Maria Luisa Sulis; Veronique Duke; Letizia Foroni; Sarah Jenkinson; Kenneth Koo; Christopher Allen; Rosemary E. Gale; Georgina Buck; Sue Richards; Elisabeth Paietta; Jacob M. Rowe; Martin S. Tallman; Anthony H. Goldstone; Adolfo A. Ferrando; David C. Linch

PURPOSE Notch pathway activation by mutations in either NOTCH1 and/or FBXW7 is one of the most common molecular events in T-cell acute lymphoblastic leukemia (T-ALL) and, in pediatric disease, predicts for favorable outcome. Their prognostic significance in adult T-ALL is unclear. We sought to evaluate the outcome according to mutation status of patients with adult T-ALL treated on the United Kingdom Acute Lymphoblastic Leukaemia XII (UKALLXII)/Eastern Cooperative Oncology Group (ECOG) E2993 protocol. METHODS NOTCH1 and FBXW7 were screened by a combination of denaturing high-performance liquid chromatography and sequencing in 88 adult patients with T-ALL treated on the UKALLXII/ECOG E2993 protocol and compared with clinical characteristics and outcome. RESULTS NOTCH1 and FBXW7 mutations were common (60% and 18%, respectively) and were not associated with age or WBC count. NOTCH1 heterodimerization domain mutations were associated with FBXW7 mutations (P = .02), and NOTCH1 proline, glutamic acid, serine, threonine (PEST) rich domain and FBXW7 mutations were mutually exclusive. There were an equal number of high- and standard-risk patients in the NOTCH1 and FBXW7 mutated (MUT) groups. Patients wild type (WT) for both markers trended toward poorer event-free survival (EFS; MUT v WT, 51% v 27%, P = .10; hazard ratio, 0.6). Analysis by each marker individually was not significantly predictive of outcome (NOTCH1 MUT v WT, EFS 49% v 34%, P = .20; FBXW7 MUT v WT, EFS 53% v 41%, P.72). CONCLUSION NOTCH1 and FBXW7 mutant-positive patients do not fare sufficiently well to warrant an individualized treatment approach in future studies.

Collaboration


Dive into the Marc R. Mansour's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Takaomi Sanda

National University of Singapore

View shared research outputs
Top Co-Authors

Avatar

Richard A. Young

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

David C. Linch

University College London

View shared research outputs
Top Co-Authors

Avatar

Brian J. Abraham

Massachusetts Institute of Technology

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge