Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcella Devoto is active.

Publication


Featured researches published by Marcella Devoto.


Nature | 2008

Identification of ALK as a major familial neuroblastoma predisposition gene

Yael P. Mosse; Marci Laudenslager; Luca Longo; Kristina A. Cole; Andrew K.W. Wood; Edward F. Attiyeh; Michael J. Laquaglia; Rachel Sennett; Jill Lynch; Patrizia Perri; Genevieve Laureys; Frank Speleman; Cecilia Kim; Cuiping Hou; Hakon Hakonarson; Ali Torkamani; Nicholas J. Schork; Garrett M. Brodeur; Gian Paolo Tonini; Eric Rappaport; Marcella Devoto; John M. Maris

Neuroblastoma is a childhood cancer that can be inherited, but the genetic aetiology is largely unknown. Here we show that germline mutations in the anaplastic lymphoma kinase (ALK) gene explain most hereditary neuroblastomas, and that activating mutations can also be somatically acquired. We first identified a significant linkage signal at chromosome bands 2p23–24 using a whole-genome scan in neuroblastoma pedigrees. Resequencing of regional candidate genes identified three separate germline missense mutations in the tyrosine kinase domain of ALK that segregated with the disease in eight separate families. Resequencing in 194 high-risk neuroblastoma samples showed somatically acquired mutations in the tyrosine kinase domain in 12.4% of samples. Nine of the ten mutations map to critical regions of the kinase domain and were predicted, with high probability, to be oncogenic drivers. Mutations resulted in constitutive phosphorylation, and targeted knockdown of ALK messenger RNA resulted in profound inhibition of growth in all cell lines harbouring mutant or amplified ALK, as well as in two out of six wild-type cell lines for ALK. Our results demonstrate that heritable mutations of ALK are the main cause of familial neuroblastoma, and that germline or acquired activation of this cell-surface kinase is a tractable therapeutic target for this lethal paediatric malignancy.


Nature Genetics | 2004

Cornelia de Lange syndrome is caused by mutations in NIPBL, the human homolog of Drosophila melanogaster Nipped-B

Ian D. Krantz; Jennifer McCallum; Cheryl DeScipio; Maninder Kaur; Lynette Gillis; Dinah Yaeger; Lori Jukofsky; Nora Wasserman; Armand Bottani; Colleen A. Morris; Małgorzata J.M. Nowaczyk; Helga V. Toriello; Michael J. Bamshad; John C. Carey; Eric Rappaport; Shimako Kawauchi; Arthur D. Lander; Anne L. Calof; Hui Hua Li; Marcella Devoto; Laird G. Jackson

Cornelia de Lange syndrome (CdLS; OMIM 122470) is a dominantly inherited multisystem developmental disorder characterized by growth and cognitive retardation; abnormalities of the upper limbs; gastroesophageal dysfunction; cardiac, ophthalmologic and genitourinary anomalies; hirsutism; and characteristic facial features. Genital anomalies, pyloric stenosis, congenital diaphragmatic hernias, cardiac septal defects, hearing loss and autistic and self-injurious tendencies also frequently occur. Prevalence is estimated to be as high as 1 in 10,000 (ref. 4). We carried out genome-wide linkage exclusion analysis in 12 families with CdLS and identified four candidate regions, of which chromosome 5p13.1 gave the highest multipoint lod score of 2.7. This information, together with the previous identification of a child with CdLS with a de novo t(5;13)(p13.1;q12.1) translocation, allowed delineation of a 1.1-Mb critical region on chromosome 5 for the gene mutated in CdLS. We identified mutations in one gene in this region, which we named NIPBL, in four sporadic and two familial cases of CdLS. We characterized the genomic structure of NIPBL and found that it is widely expressed in fetal and adult tissues. The fly homolog of NIPBL, Nipped-B, facilitates enhancer-promoter communication and regulates Notch signaling and other developmental pathways in Drosophila melanogaster.


Nature | 2007

A genome-wide association study identifies KIAA0350 as a type 1 diabetes gene.

Hakon Hakonarson; Struan F. A. Grant; Jonathan P. Bradfield; Luc Marchand; Cecilia E. Kim; Joseph T. Glessner; Rosemarie Grabs; Tracy Casalunovo; Shayne Taback; Edward C. Frackelton; Margaret L. Lawson; Luke J. Robinson; Robert Skraban; Yang Lu; Rosetta M. Chiavacci; Charles A. Stanley; Susan E. Kirsch; Eric Rappaport; Jordan S. Orange; Dimitri Monos; Marcella Devoto; Hui Qi Qu; Constantin Polychronakos

Type 1 diabetes (T1D) in children results from autoimmune destruction of pancreatic beta cells, leading to insufficient production of insulin. A number of genetic determinants of T1D have already been established through candidate gene studies, primarily within the major histocompatibility complex but also within other loci. To identify new genetic factors that increase the risk of T1D, we performed a genome-wide association study in a large paediatric cohort of European descent. In addition to confirming previously identified loci, we found that T1D was significantly associated with variation within a 233-kb linkage disequilibrium block on chromosome 16p13. This region contains KIAA0350, the gene product of which is predicted to be a sugar-binding, C-type lectin. Three common non-coding variants of the gene (rs2903692, rs725613 and rs17673553) in strong linkage disequilibrium reached genome-wide significance for association with T1D. A subsequent transmission disequilibrium test replication study in an independent cohort confirmed the association. These results indicate that KIAA0350 might be involved in the pathogenesis of T1D and demonstrate the utility of the genome-wide association approach in the identification of previously unsuspected genetic determinants of complex traits.


Nature Genetics | 2000

Charcot-Marie-Tooth type 4B is caused by mutations in the gene encoding myotubularin-related protein-2.

Alessandra Bolino; Maria Muglia; Francesca Luisa Conforti; Eric LeGuern; Mustafa A. Salih; Domna Maria Georgiou; Kyproula Christodoulou; Irena Hausmanowa-Petrusewicz; Paola Mandich; Angelo Schenone; Antonio Gambardella; F. Bono; Aldo Quattrone; Marcella Devoto; Anthony P. Monaco

A gene mutated in Charcot-Marie-Tooth disease type 4B (CMT4B), an autosomal recessive demyelinating neuropathy with myelin outfoldings, has been mapped on chromosome 11q22. Using a positional-cloning strategy, we identified in unrelated CMT4B patients mutations occurring in the gene MTMR2, encoding myotubularin-related protein-2, a dual specificity phosphatase (DSP).


Molecular Psychiatry | 2010

Rare structural variants found in attention-deficit hyperactivity disorder are preferentially associated with neurodevelopmental genes.

Josephine Elia; Xiaowu Gai; Hongbo M. Xie; Juan C. Perin; Elizabeth A. Geiger; Joe Glessner; M. D'Arcy; Rachel deBerardinis; Edward C. Frackelton; Cecilia Kim; Francesca Lantieri; B M Muganga; Li-San Wang; Toshinobu Takeda; Eric Rappaport; Struan F. A. Grant; Wade H. Berrettini; Marcella Devoto; Tamim H. Shaikh; Hakon Hakonarson; Peter S. White

Attention-deficit/hyperactivity disorder (ADHD) is a common and highly heritable disorder, but specific genetic factors underlying risk remain elusive. To assess the role of structural variation in ADHD, we identified 222 inherited copy number variations (CNVs) within 335 ADHD patients and their parents that were not detected in 2026 unrelated healthy individuals. Although no excess CNVs, either deletions or duplications, were found in the ADHD cohort relative to controls, the inherited rare CNV-associated gene set was significantly enriched for genes reported as candidates in studies of autism, schizophrenia and Tourette syndrome, including A2BP1, AUTS2, CNTNAP2 and IMMP2L. The ADHD CNV gene set was also significantly enriched for genes known to be important for psychological and neurological functions, including learning, behavior, synaptic transmission and central nervous system development. Four independent deletions were located within the protein tyrosine phosphatase gene, PTPRD, recently implicated as a candidate gene for restless legs syndrome, which frequently presents with ADHD. A deletion within the glutamate receptor gene, GRM5, was found in an affected parent and all three affected offspring whose ADHD phenotypes closely resembled those of the GRM5 null mouse. Together, these results suggest that rare inherited structural variations play an important role in ADHD development and indicate a set of putative candidate genes for further study in the etiology of ADHD.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


The New England Journal of Medicine | 2010

Variants of DENND1B Associated with Asthma in Children

Patrick Sleiman; James H. Flory; Marcin Imielinski; Jonathan P. Bradfield; Kiran Annaiah; Saffron A. G. Willis-Owen; Kai Wang; Nicholas Rafaels; Sven Michel; Klaus Bønnelykke; Haitao Zhang; Cecilia E. Kim; Edward C. Frackelton; Joseph T. Glessner; Cuiping Hou; F. George Otieno; Erin Santa; Kelly Thomas; Ryan M. Smith; Wendy Glaberson; Maria Garris; Rosetta M. Chiavacci; Terri H. Beaty; Ingo Ruczinski; Jordan M. Orange; Julian L. Allen; Jonathan M. Spergel; Robert W. Grundmeier; Rasika A. Mathias; Jason D. Christie

BACKGROUND Asthma is a complex disease that has genetic and environmental causes. The genetic factors associated with susceptibility to asthma remain largely unknown. METHODS We carried out a genomewide association study involving children with asthma. The sample included 793 North American children of European ancestry with persistent asthma who required daily inhaled glucocorticoid therapy and 1988 matched controls (the discovery set). We also tested for genomewide association in an independent cohort of 917 persons of European ancestry who had asthma and 1546 matched controls (the replication set). Finally, we tested for an association between 20 single-nucleotide polymorphisms (SNPs) at chromosome 1q31 and asthma in 1667 North American children of African ancestry who had asthma and 2045 ancestrally matched controls. RESULTS In our meta-analysis of all samples from persons of European ancestry, we observed an association, with genomewide significance, between asthma and SNPs at the previously reported locus on 17q21 and an additional eight SNPs at a novel locus on 1q31. The SNP most strongly associated with asthma was rs2786098 (P=8.55x10(-9)). We observed replication of the association of asthma with SNP rs2786098 in the independent series of persons of European ancestry (combined P=9.3x10(-11)). The alternative allele of each of the eight SNPs on chromosome 1q31 was strongly associated with asthma in the children of African ancestry (P=1.6x10(-13) for the comparison across all samples). The 1q31 locus contains the 1q31 locus contains DENND1B, a gene expressed by natural killer cells and dendritic cells. DENND1B protein is predicted to interact with the tumor necrosis factor α receptor [corrected]. CONCLUSIONS We have identified a locus containing DENND1B on chromosome 1q31.3 that is associated with susceptibility to asthma.


American Journal of Human Genetics | 2004

NIPBL Mutational Analysis in 120 Individuals with Cornelia de Lange Syndrome and Evaluation of Genotype-Phenotype Correlations

Lynette Gillis; Jennifer McCallum; Maninder Kaur; Cheryl DeScipio; Dinah Yaeger; Allison Mariani; Antonie D. Kline; Hui Hua Li; Marcella Devoto; Laird G. Jackson; Ian D. Krantz

The Cornelia de Lange syndrome (CdLS) is a multisystem developmental disorder characterized by facial dysmorphia, upper-extremity malformations, hirsutism, cardiac defects, growth and cognitive retardation, and gastrointestinal abnormalities. Both missense and protein-truncating mutations in NIPBL, the human homolog of the Drosophila melanogaster Nipped-B gene, have recently been reported to cause CdLS. The function of NIPBL in mammals is unknown. The Drosophila Nipped-B protein facilitates long-range enhancer-promoter interactions and plays a role in Notch signaling and other developmental pathways, as well as being involved in mitotic sister-chromatid cohesion. We report the spectrum and distribution of NIPBL mutations in a large well-characterized cohort of individuals with CdLS. Mutations were found in 56 (47%) of 120 unrelated individuals with sporadic or familial CdLS. Statistically significant phenotypic differences between mutation-positive and mutation-negative individuals were identified. Analysis also suggested a trend toward a milder phenotype in individuals with missense mutations than in those with other types of mutations.


European Journal of Human Genetics | 1998

First-stage autosomal genome screen in extended pedigrees suggests genes predisposing to low bone mineral density on chromosomes 1p, 2p and 4q

Marcella Devoto; K. Shimoya; John Caminis; Jurg Ott; Alan Tenenhouse; Mp Whyte; Larisa Sereda; S Hall; Eileen L. Considine; Charlene J. Williams; G. Tromp; Helena Kuivaniemi; L Ala-Kokko; Darwin J. Prockop; Loretta D. Spotila

Osteoporosis is characterized by low bone density, and osteopenia is responsible for 1.5 million fractures in the United States annually.1 In order to identify regions of the genome which are likely to contain genes predisposing to osteopenia, we genotyped 149 members of seven large pedigrees having recurrence of low bone mineral density (BMD) with 330 DNA markers spread throughout the autosomal genome. Linkage analysis for this quantitative trait was carried out using spine and hip BMD values by the classical lod-score method using a genetic model with parameters estimated from the seven families. In addition, non-parametric analysis was performed using the traditional Haseman-Elston approach in 74 independent sib pairs from the same pedigrees. The maximum lod score obtained by parametric analysis in all families combined was +2.08 (θ = 0.05) for the marker CD3D on chromosome 11q. All other combined lod scores from the parametric analysis were less than +1.90, the threshold for suggestive linkage. Non-parametric analysis suggested linkage of low BMD to chromosomes 1p36 (Zmax = +3.51 for D1S450) and 2p23-24 (Zmax = +2.07 for D2S149). Maximum multi-point lod scores for these regions were +2.29 and +2.25, respectively. A third region with associated lod scores above the threshold of suggestive linkage in both single-point and multi-point non-parametric analysis was on chromosome 4qter (Zmax = +2.95 for D4S1539 and Zmax = +2.48 for D4S1554). Our data suggest the existence of multiple genes involved in controlling spine and hip BMD, and indicate several candidate regions for further screening in this and other independent samples.


Human Genetics | 1998

A common mutation in Sardinian autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients

Maria Cristina Rosatelli; Alessandra Meloni; Antonella Meloni; Marcella Devoto; Antonio Cao; Hamish S. Scott; Pärt Peterson; Maarit Heino; Kai Krohn; Kentaro Nagamine; Jun Kudoh; Nobuyoshi Shimizu

Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED; also called APS-1,) is a rare autosomal recessive disorder that is more frequent in certain isolated populations. It is characterized by two of the three major clinical symptoms that may be present: Addison’s disease, and/or hypoparathyroidism and/or chronic mucocutaneous candidiasis. We have recently identified the gene for APECED, which we termed AIRE (for autoimmune regulator). AIRE is expressed in thymus, lymph nodes and fetal liver, and encodes a protein with two putative zinc fingers and other motifs suggestive of a transcriptional regulator. Seven mutations have been described to date, including R257X, the predominant Finnish and northern Italian APECED allele, which has also been observed in other patients of diverse origin on different haplotypes. A 13-bp deletion (1094–1106del) has also been observed in several patients of different geo-ethnic origin. The other described mutations appear to be rare. We present mutational analyses of the AIRE gene in ten Sardinian APECED families and show that there is a mutation, R139X, associated with one predominant haplotype unique to the Sardinian patients (18/20 independent alleles). The carrier frequency of R139X in Sardinia is 1.7%, giving an estimated population frequency of APECED of 1/14,400. Using linkage disequilibrium data, the estimated age of the R139X mutation is between 20 and 25 generations. A previously described 13-bp deletion was also observed on an allele of one patient. The identification of a single common Sardinian APECED mutation will facilitate its genetic diagnosis. Given the carrier frequency of R139X in the Sardinian population, AIRE may be implicated in the pathogenesis of other autoimmune diseases in the Sardinian population, particularly those affecting the endocrine system.

Collaboration


Dive into the Marcella Devoto's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Hakon Hakonarson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Judith R. Kelsen

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Sharon J. Diskin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Mario Capasso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Joseph T. Glessner

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Maura Diamond

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maurizio Ferrari

Vita-Salute San Raffaele University

View shared research outputs
Researchain Logo
Decentralizing Knowledge