Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maura Diamond is active.

Publication


Featured researches published by Maura Diamond.


Nature Genetics | 2013

The genetic landscape of high-risk neuroblastoma

Trevor J. Pugh; Olena Morozova; Edward F. Attiyeh; Shahab Asgharzadeh; Jun S. Wei; Daniel Auclair; Scott L. Carter; Kristian Cibulskis; Megan Hanna; Adam Kiezun; Jaegil Kim; Michael S. Lawrence; Lee Lichenstein; Aaron McKenna; Chandra Sekhar Pedamallu; Alex H. Ramos; Erica Shefler; Andrey Sivachenko; Carrie Sougnez; Chip Stewart; Adrian Ally; Inanc Birol; Readman Chiu; Richard Corbett; Martin Hirst; Shaun D. Jackman; Baljit Kamoh; Alireza Hadj Khodabakshi; Martin Krzywinski; Allan Lo

Neuroblastoma is a malignancy of the developing sympathetic nervous system that often presents with widespread metastatic disease, resulting in survival rates of less than 50%. To determine the spectrum of somatic mutation in high-risk neuroblastoma, we studied 240 affected individuals (cases) using a combination of whole-exome, genome and transcriptome sequencing as part of the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) initiative. Here we report a low median exonic mutation frequency of 0.60 per Mb (0.48 nonsilent) and notably few recurrently mutated genes in these tumors. Genes with significant somatic mutation frequencies included ALK (9.2% of cases), PTPN11 (2.9%), ATRX (2.5%, and an additional 7.1% had focal deletions), MYCN (1.7%, causing a recurrent p.Pro44Leu alteration) and NRAS (0.83%). Rare, potentially pathogenic germline variants were significantly enriched in ALK, CHEK2, PINK1 and BARD1. The relative paucity of recurrent somatic mutations in neuroblastoma challenges current therapeutic strategies that rely on frequently altered oncogenic drivers.


Nature | 2009

Copy number variation at 1q21.1 associated with neuroblastoma

Sharon J. Diskin; Cuiping Hou; Joseph T. Glessner; Edward F. Attiyeh; Marci Laudenslager; Kristopher R. Bosse; Kristina A. Cole; Yael P. Mosse; Andrew C. Wood; Jill Lynch; Katlyn Pecor; Maura Diamond; Cynthia Winter; Kai Wang; Cecilia Kim; Elizabeth A. Geiger; Patrick McGrady; Alexandra I. F. Blakemore; Wendy B. London; Tamim H. Shaikh; Jonathan P. Bradfield; Struan F. A. Grant; Hongzhe Li; Marcella Devoto; Eric R. Rappaport; Hakon Hakonarson; John M. Maris

Common copy number variations (CNVs) represent a significant source of genetic diversity, yet their influence on phenotypic variability, including disease susceptibility, remains poorly understood. To address this problem in human cancer, we performed a genome-wide association study of CNVs in the childhood cancer neuroblastoma, a disease in which single nucleotide polymorphism variations are known to influence susceptibility. We first genotyped 846 Caucasian neuroblastoma patients and 803 healthy Caucasian controls at ∼550,000 single nucleotide polymorphisms, and performed a CNV-based test for association. We then replicated significant observations in two independent sample sets comprised of a total of 595 cases and 3,357 controls. Here we describe the identification of a common CNV at chromosome 1q21.1 associated with neuroblastoma in the discovery set, which was confirmed in both replication sets. This CNV was validated by quantitative polymerase chain reaction, fluorescent in situ hybridization and analysis of matched tumour specimens, and was shown to be heritable in an independent set of 713 cancer-free parent–offspring trios. We identified a previously unknown transcript within the CNV that showed high sequence similarity to several neuroblastoma breakpoint family (NBPF) genes and represents a new member of this gene family (NBPF23). This transcript was preferentially expressed in fetal brain and fetal sympathetic nervous tissues, and the expression level was strictly correlated with CNV state in neuroblastoma cells. These data demonstrate that inherited copy number variation at 1q21.1 is associated with neuroblastoma and implicate a previously unknown neuroblastoma breakpoint family gene in early tumorigenesis of this childhood cancer.


Nature Genetics | 2009

Common variations in BARD1 influence susceptibility to high-risk neuroblastoma

Mario Capasso; Marcella Devoto; Cuiping Hou; Shahab Asgharzadeh; Joseph T. Glessner; Edward F. Attiyeh; Yael P. Mosse; Cecilia Kim; Sharon J. Diskin; Kristina A. Cole; Kristopher R. Bosse; Maura Diamond; Marci Laudenslager; Cynthia Winter; Jonathan P. Bradfield; Richard H. Scott; Jayanti Jagannathan; Maria Garris; Carmel McConville; Wendy B. London; Robert C. Seeger; Struan F. A. Grant; Hongzhe Li; Nazneen Rahman; Eric Rappaport; Hakon Hakonarson; John M. Maris

We conducted a SNP-based genome-wide association study (GWAS) focused on the high-risk subset of neuroblastoma. As our previous unbiased GWAS showed strong association of common 6p22 SNP alleles with aggressive neuroblastoma, we restricted our analysis here to 397 high-risk cases compared to 2,043 controls. We detected new significant association of six SNPs at 2q35 within the BARD1 locus (Pallelic = 2.35 × 10−9–2.25 × 10−8). We confirmed each SNP association in a second series of 189 high-risk cases and 1,178 controls (Pallelic = 7.90 × 10−7–2.77 × 10−4). We also tested the two most significant SNPs (rs6435862, rs3768716) in two additional independent high-risk neuroblastoma case series, yielding combined allelic odds ratios of 1.68 each (P = 8.65 × 10−18 and 2.74 × 10−16, respectively). We also found significant association with known BARD1 nonsynonymous SNPs. These data show that common variation in BARD1 contributes to the etiology of the aggressive and most clinically relevant subset of human neuroblastoma.


Nature | 2011

Integrative genomics identifies LMO1 as a neuroblastoma oncogene

Kai Wang; Sharon J. Diskin; Haitao Zhang; Edward F. Attiyeh; Cynthia Winter; Cuiping Hou; Robert W. Schnepp; Maura Diamond; Kristopher R. Bosse; Patrick A. Mayes; Joseph T. Glessner; Cecilia Kim; Edward C. Frackelton; Maria Garris; Qun Wang; Wendy Glaberson; Rosetta M. Chiavacci; Le Nguyen; Jayanti Jagannathan; Norihisa Saeki; Hiroki Sasaki; Struan F. A. Grant; Achille Iolascon; Yael P. Mosse; Kristina A. Cole; Hongzhe Li; Marcella Devoto; Patrick McGrady; Wendy B. London; Mario Capasso

Neuroblastoma is a childhood cancer of the sympathetic nervous system that accounts for approximately 10% of all paediatric oncology deaths. To identify genetic risk factors for neuroblastoma, we performed a genome-wide association study (GWAS) on 2,251 patients and 6,097 control subjects of European ancestry from four case series. Here we report a significant association within LIM domain only 1 (LMO1) at 11p15.4 (rs110419, combined P = 5.2 × 10−16, odds ratio of risk allele = 1.34 (95% confidence interval 1.25–1.44)). The signal was enriched in the subset of patients with the most aggressive form of the disease. LMO1 encodes a cysteine-rich transcriptional regulator, and its paralogues (LMO2, LMO3 and LMO4) have each been previously implicated in cancer. In parallel, we analysed genome-wide DNA copy number alterations in 701 primary tumours. We found that the LMO1 locus was aberrant in 12.4% through a duplication event, and that this event was associated with more advanced disease (P < 0.0001) and survival (P = 0.041). The germline single nucleotide polymorphism (SNP) risk alleles and somatic copy number gains were associated with increased LMO1 expression in neuroblastoma cell lines and primary tumours, consistent with a gain-of-function role in tumorigenesis. Short hairpin RNA (shRNA)-mediated depletion of LMO1 inhibited growth of neuroblastoma cells with high LMO1 expression, whereas forced expression of LMO1 in neuroblastoma cells with low LMO1 expression enhanced proliferation. These data show that common polymorphisms at the LMO1 locus are strongly associated with susceptibility to developing neuroblastoma, but also may influence the likelihood of further somatic alterations at this locus, leading to malignant progression.


Nature Genetics | 2012

Common variation at 6q16 within HACE1 and LIN28B influences susceptibility to neuroblastoma

Sharon J. Diskin; Mario Capasso; Robert W. Schnepp; Kristina A. Cole; Edward F. Attiyeh; Cuiping Hou; Maura Diamond; Erica L. Carpenter; Cynthia Winter; Hanna Lee; Jayanti Jagannathan; Valeria Latorre; Achille Iolascon; Hakon Hakonarson; Marcella Devoto; John M. Maris

Neuroblastoma is a cancer of the sympathetic nervous system that accounts for approximately 10% of all pediatric oncology deaths. Here, we report a genome-wide association study of 2,817 neuroblastoma cases and 7,473 controls. We identified two new associations at 6q16, the first within HACE1 (rs4336470; combined P = 2.7 × 10−11; odds ratio 1.26, 95% confidence interval (CI) 1.18–1.35) and the second within LIN28B (rs17065417; combined P = 1.2 × 10−8; odds ratio 1.38, 95% CI 1.23–1.54). Expression of LIN28B and let-7 miRNA correlated with rs17065417 genotype in neuroblastoma cell lines, and we observed significant growth inhibition upon depletion of LIN28B, specifically in neuroblastoma cells that were homozygous for the risk allele. Low HACE1 and high LIN28B expression in diagnostic primary neuroblastomas were associated with worse overall survival (P = 0.008 and 0.014, respectively). Taken together, these data show that common variants in HACE1 and LIN28B influence neuroblastoma susceptibility and indicate that both genes likely have a role in disease progression.


PLOS Genetics | 2011

Phenotype Restricted Genome-Wide Association Study Using a Gene-Centric Approach Identifies Three Low-Risk Neuroblastoma Susceptibility Loci

Lễ B. Nguyễn; Sharon J. Diskin; Mario Capasso; Kai Wang; Maura Diamond; Joseph T. Glessner; Cecilia Kim; Edward F. Attiyeh; Yael P. Mosse; Kristina A. Cole; Achille Iolascon; Marcella Devoto; Hakon Hakonarson; Hongzhe Li; John M. Maris

Neuroblastoma is a malignant neoplasm of the developing sympathetic nervous system that is notable for its phenotypic diversity. High-risk patients typically have widely disseminated disease at diagnosis and a poor survival probability, but low-risk patients frequently have localized tumors that are almost always cured with little or no chemotherapy. Our genome-wide association study (GWAS) has identified common variants within FLJ22536, BARD1, and LMO1 as significantly associated with neuroblastoma and more robustly associated with high-risk disease. Here we show that a GWAS focused on low-risk cases identified SNPs within DUSP12 at 1q23.3 (P = 2.07×10−6), DDX4 and IL31RA both at 5q11.2 (P = 2.94×10−6 and 6.54×10−7 respectively), and HSD17B12 at 11p11.2 (P = 4.20×10−7) as being associated with the less aggressive form of the disease. These data demonstrate the importance of robust phenotypic data in GWAS analyses and identify additional susceptibility variants for neuroblastoma.


Cancer Research | 2012

Common Variation at BARD1 Results in the Expression of an Oncogenic Isoform That Influences Neuroblastoma Susceptibility and Oncogenicity

Kristopher R. Bosse; Sharon J. Diskin; Kristina A. Cole; Andrew C. Wood; Robert W. Schnepp; Geoffrey Norris; Le B. Nguyen; Jayanti Jagannathan; Michael J. Laquaglia; Cynthia Winter; Maura Diamond; Cuiping Hou; Edward F. Attiyeh; Yael P. Mosse; Vanessa Pineros; Eva Dizin; Yong-Qiang Zhang; Shahab Asgharzadeh; Robert C. Seeger; Mario Capasso; Bruce R. Pawel; Marcella Devoto; Hakon Hakonarson; Eric Rappaport; Irmgard Irminger-Finger; John M. Maris

The mechanisms underlying genetic susceptibility at loci discovered by genome-wide association study (GWAS) approaches in human cancer remain largely undefined. In this study, we characterized the high-risk neuroblastoma association at the BRCA1-related locus, BARD1, showing that disease-associated variations correlate with increased expression of the oncogenically activated isoform, BARD1β. In neuroblastoma cells, silencing of BARD1β showed genotype-specific cytotoxic effects, including decreased substrate-adherence, anchorage-independence, and foci growth. In established murine fibroblasts, overexpression of BARD1β was sufficient for neoplastic transformation. BARD1β stabilized the Aurora family of kinases in neuroblastoma cells, suggesting both a mechanism for the observed effect and a potential therapeutic strategy. Together, our findings identify BARD1β as an oncogenic driver of high-risk neuroblastoma tumorigenesis, and more generally, they illustrate how robust GWAS signals offer genomic landmarks to identify molecular mechanisms involved in both tumor initiation and malignant progression. The interaction of BARD1β with the Aurora family of kinases lends strong support to the ongoing work to develop Aurora kinase inhibitors for clinically aggressive neuroblastoma.


Cancer Research | 2015

CASC15-S Is a Tumor Suppressor lncRNA at the 6p22 Neuroblastoma Susceptibility Locus.

Mike R. Russell; Annalise Penikis; Derek A. Oldridge; Juan R. Alvarez-Dominguez; Lee McDaniel; Maura Diamond; Olivia Padovan; Pichai Raman; Yimei Li; Jun S. Wei; Shile Zhang; Janahan Gnanchandran; Robert C. Seeger; Shahab Asgharzadeh; Javed Khan; Sharon J. Diskin; John M. Maris; Kristina A. Cole

Chromosome 6p22 was identified recently as a neuroblastoma susceptibility locus, but its mechanistic contributions to tumorigenesis are as yet undefined. Here we report that the most highly significant single-nucleotide polymorphism (SNP) associations reside within CASC15, a long noncoding RNA that we define as a tumor suppressor at 6p22. Low-level expression of a short CASC15 isoform (CASC15-S) associated highly with advanced neuroblastoma and poor patient survival. In human neuroblastoma cells, attenuating CASC15-S increased cellular growth and migratory capacity. Gene expression analysis revealed downregulation of neuroblastoma-specific markers in cells with attenuated CASC15-S, with concomitant increases in cell adhesion and extracellular matrix transcripts. Altogether, our results point to CASC15-S as a mediator of neural growth and differentiation, which impacts neuroblastoma initiation and progression.


Cancer Research | 2014

Common genetic variants in NEFL influence gene expression and neuroblastoma risk.

Mario Capasso; Sharon J. Diskin; Flora Cimmino; Giovanni Acierno; Francesca Totaro; Giuseppe Petrosino; Lucia Pezone; Maura Diamond; Lee McDaniel; Hakon Hakonarson; Achille Iolascon; Marcella Devoto; John M. Maris

The genetic etiology of sporadic neuroblastoma is still largely obscure. In a genome-wide association study, we identified single-nucleotide polymorphisms (SNP) associated with neuroblastoma at the CASC15, BARD1, LMO1, DUSP12, HSD17B12, HACE1, and LIN28B gene loci, but these explain only a small fraction of neuroblastoma heritability. Other neuroblastoma susceptibility genes are likely hidden among signals discarded by the multiple testing corrections. In this study, we evaluated eight additional genes selected as candidates for further study based on proven involvement in neuroblastoma differentiation. SNPs at these candidate genes were tested for association with disease susceptibility in 2,101 cases and 4,202 controls, with the associations found replicated in an independent cohort of 459 cases and 809 controls. Replicated associations were further studied for cis-effect using gene expression, transient overexpression, silencing, and cellular differentiation assays. The neurofilament gene NEFL harbored three SNPs associated with neuroblastoma (rs11994014: Pcombined = 0.0050; OR, 0.88; rs2979704: Pcombined = 0.0072; OR, 0.87; rs1059111: Pcombined = 0.0049; OR, 0.86). The protective allele of rs1059111 correlated with increased NEFL expression. Biologic investigations showed that ectopic overexpression of NEFL inhibited cell growth specifically in neuroblastoma cells carrying the protective allele. NEFL overexpression also enhanced differentiation and impaired the proliferation and anchorage-independent growth of cells with protective allele and basal NEFL expression, while impairing invasiveness and proliferation of cells homozygous for the risk genotype. Clinically, high levels of NEFL expression in primary neuroblastoma specimens were associated with better overall survival (P = 0.03; HR, 0.68). Our results show that common variants of NEFL influence neuroblastoma susceptibility and they establish that NEFL expression influences disease initiation and progression.


Cancer Epidemiology, Biomarkers & Prevention | 2012

Replication of neuroblastoma SNP association at the BARD1 locus in African-Americans

Valeria Latorre; Sharon J. Diskin; Maura Diamond; Haitao Zhang; Hakon Hakonarson; John M. Maris; Marcella Devoto

Background: Neuroblastoma is an often fatal pediatric cancer more frequent in European-American than African-American children. African-American children, however, are at higher risk for the more severe form of neuroblastoma and have worse overall survival than European-American children. Genome-wide association studies (GWAS) have identified several single-nucleotide polymorphisms (SNP) associated to neuroblastoma in children of European descent. Knowledge of their association to neuroblastoma in African-American children is still lacking. Methods: We genotyped and imputed SNPs located in three gene regions reported to be associated to neuroblastoma in children of European descent, and tested them for association in 390 African-American patients with neuroblastoma compared with 2,500 healthy, ethnically matched controls. Results: SNPs in the BARD1 gene region show a similar pattern of association to neuroblastoma in African-American and European-American children. The more restricted extent of linkage disequilibrium in the African-American population suggests a smaller candidate region for the putative causal variants than previously reported. Limited association was observed at the other two gene regions tested, including LMO1 in 11p15 and FLJ22536 in 6p22. Conclusions: Common BARD1 SNPs affect risk of neuroblastoma in African-Americans. The role of other SNPs associated to neuroblastoma in children of European descent could not be confirmed, possibly due to different patterns of linkage disequilibrium or limited statistical power to detect association to variants with small effect on disease risk. Extension of GWAS to populations of African descent is important to confirm their results and validity beyond the European populations and can help to refine the location of the putative causal variants. Cancer Epidemiol Biomarkers Prev; 21(4); 658–63. ©2012 AACR.

Collaboration


Dive into the Maura Diamond's collaboration.

Top Co-Authors

Avatar

John M. Maris

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Sharon J. Diskin

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Hakon Hakonarson

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Edward F. Attiyeh

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Marcella Devoto

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Mario Capasso

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar

Kristina A. Cole

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Yael P. Mosse

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Cuiping Hou

Children's Hospital of Philadelphia

View shared research outputs
Top Co-Authors

Avatar

Derek A. Oldridge

Children's Hospital of Philadelphia

View shared research outputs
Researchain Logo
Decentralizing Knowledge