Marcella Sarzotti-Kelsoe
Duke University
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marcella Sarzotti-Kelsoe.
Journal of Immunological Methods | 2014
Marcella Sarzotti-Kelsoe; Robert T. Bailer; Ellen Turk; Chen-li Lin; Miroslawa Bilska; Kelli M. Greene; Hongmei Gao; Christopher A. Todd; Daniel A. Ozaki; Michael S. Seaman; John R. Mascola; David C. Montefiori
The TZM-bl assay measures antibody-mediated neutralization of HIV-1 as a function of reductions in HIV-1 Tat-regulated firefly luciferase (Luc) reporter gene expression after a single round of infection with Env-pseudotyped viruses. This assay has become the main endpoint neutralization assay used for the assessment of pre-clinical and clinical trial samples by a growing number of laboratories worldwide. Here we present the results of the formal optimization and validation of the TZM-bl assay, performed in compliance with Good Clinical Laboratory Practice (GCLP) guidelines. The assay was evaluated for specificity, accuracy, precision, limits of detection and quantitation, linearity, range and robustness. The validated manual TZM-bl assay was also adapted, optimized and qualified to an automated 384-well format.
Journal of Virology | 2014
Allan C. deCamp; Peter Hraber; Robert T. Bailer; Michael S. Seaman; Christina Ochsenbauer; John C. Kappes; Raphael Gottardo; Paul T. Edlefsen; Steve Self; Haili Tang; Kelli M. Greene; Hongmei Gao; Xiaoju G. Daniell; Marcella Sarzotti-Kelsoe; Miroslaw K. Gorny; Susan Zolla-Pazner; Celia C. LaBranche; John R. Mascola; Bette T. Korber; David C. Montefiori
ABSTRACT Standardized assessments of HIV-1 vaccine-elicited neutralizing antibody responses are complicated by the genetic and antigenic variability of the viral envelope glycoproteins (Envs). To address these issues, suitable reference strains are needed that are representative of the global epidemic. Several panels have been recommended previously, but no clear answers have been available on how many and which strains are best suited for this purpose. We used a statistical model selection method to identify a global panel of reference Env clones from among 219 Env-pseudotyped viruses assayed in TZM-bl cells with sera from 205 HIV-1-infected individuals. The Envs and sera were sampled globally from diverse geographic locations and represented all major genetic subtypes and circulating recombinant forms of the virus. Assays with a panel size of only nine viruses adequately represented the spectrum of HIV-1 serum neutralizing activity seen with the larger panel of 219 viruses. An optimal panel of nine viruses was selected and augmented with three additional viruses for greater genetic and antigenic coverage. The spectrum of HIV-1 serum neutralizing activity seen with the final 12-virus panel closely approximated the activity seen with subtype-matched viruses. Moreover, the final panel was highly sensitive for detection of many of the known broadly neutralizing antibodies. For broader assay applications, all 12 Env clones were converted to infectious molecular clones using a proviral backbone carrying a Renilla luciferase reporter gene (Env.IMC.LucR viruses). This global panel should facilitate highly standardized assessments of vaccine-elicited neutralizing antibodies across multiple HIV-1 vaccine platforms in different parts of the world. IMPORTANCE An effective HIV-1 vaccine will need to overcome the extraordinary genetic variability of the virus, where most variation occurs in the viral envelope glycoproteins that are the sole targets for neutralizing antibodies. Efforts to elicit broadly cross-reactive neutralizing antibodies that will protect against infection by most circulating strains of the virus are guided in part by in vitro assays that determine the ability of vaccine-elicited antibodies to neutralize genetically diverse HIV-1 variants. Until now, little information was available on how many and which strains of the virus are best suited for this purpose. We applied robust statistical methods to evaluate a large neutralization data set and identified a small panel of viruses that are a good representation of the global epidemic. The neutralization properties of this new panel of reference strains should facilitate the development of an effective HIV-1 vaccine.
Blood | 2009
Marcella Sarzotti-Kelsoe; Chan M. Win; Roberta E. Parrott; Myriah Cooney; Barry K. Moser; Joseph L. Roberts; Gregory D. Sempowski; Rebecca H. Buckley
Severe combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B, and sometimes NK-cell function. Nonablative human leukocyte antigen-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T-cell development in the recipients, leading to long-term survival. We reported previously that normal T-cell numbers, function, and repertoire developed by 3 to 4 months after transplantation in SCID patients, and the repertoire remained highly diverse for the first 10 years after BMT. The T-cell receptor diversity positively correlated with T-cell receptor excision circle levels, a reflection of thymic output. However, the fate of thymic function in SCID patients beyond 10 to 12 years after BMT remained to be determined. In this greater than 25-year follow-up study of 128 patients with 11 different molecular types of SCID after nonconditioned BMT, we provide evidence that T-cell function, thymic output, and T-cell clonal diversity are maintained long-term.
Journal of Clinical Immunology | 2013
Rebecca H. Buckley; Chan M. Win; Barry K. Moser; Roberta E. Parrott; E.O. Sajaroff; Marcella Sarzotti-Kelsoe
PurposeSevere combined immunodeficiency (SCID) is a syndrome of diverse genetic cause characterized by profound deficiencies of T, B and sometimes NK cell function. Non-ablative HLA-identical or rigorously T cell-depleted haploidentical parental bone marrow transplantation (BMT) results in thymus-dependent genetically donor T cell development in the recipients, leading to a high rate of long-term survival. However, the development of B cell function has been more problematic. We report here results of analyses of B cell function in 125 SCID recipients prior to and long-term after non-ablative BMT, according to their molecular type.MethodsStudies included blood immunoglobulin measurements; antibody titers to standard vaccines, blood group antigens and bacteriophage Φ X 174; flow cytometry to examine for markers of immaturity, memory, switched memory B cells and BAFF receptor expression; B cell chimerism; B cell spectratyping; and B cell proliferation.ResultsThe results showed that B cell chimerism was not required for normal B cell function in IL7Rα-Def, ADA-Def and CD3-Def SCIDs. In X-linked-SCID, Jak3-Def SCID and those with V-D-J recombination defects, donor B cell chimerism was necessary for B cell function to develop.ConclusionThe most important factor determining whether B cell function develops in SCID T cell chimeras is the underlying molecular defect. In some types, host B cells function normally. In those molecular types where host B cell function did not develop, donor B cell chimerism was necessary to achieve B cell function. 236 words
PLOS Medicine | 2009
Marcella Sarzotti-Kelsoe; Josephine H. Cox; Naana Cleland; Thomas N. Denny; John Hural; Leila K. Needham; Daniel A. Ozaki; Isaac R. Rodriguez-Chavez; Gwynneth Stevens; Timothy Stiles; Tony Tarragona-Fiol; Anita H. Simkins
Marcella Sarzotti-Kelsoe and colleagues harmonize various approaches to Good Clinical Laboratory Practice for clinical trials into a single set of recommendations.
Journal of Immunological Methods | 2012
Christopher A. Todd; Kelli M. Greene; Xuesong Yu; Daniel A. Ozaki; Hongmei Gao; Yunda Huang; Maggie Wang; Gary Li; Ronald Brown; Blake Wood; M. Patricia D'Souza; Peter B. Gilbert; David C. Montefiori; Marcella Sarzotti-Kelsoe
Recent advances in assay technology have led to major improvements in how HIV-1 neutralizing antibodies are measured. A luciferase reporter gene assay performed in TZM-bl (JC53bl-13) cells has been optimized and validated. Because this assay has been adopted by multiple laboratories worldwide, an external proficiency testing program was developed to ensure data equivalency across laboratories performing this neutralizing antibody assay for HIV/AIDS vaccine clinical trials. The program was optimized by conducting three independent rounds of testing, with an increased level of stringency from the first to third round. Results from the participating domestic and international laboratories improved each round as factors that contributed to inter-assay variability were identified and minimized. Key contributors to increased agreement were experience among laboratories and standardization of reagents. A statistical qualification rule was developed using a simulation procedure based on the three optimization rounds of testing, where a laboratory qualifies if at least 25 of the 30 ID50 values lie within the acceptance ranges. This ensures no more than a 20% risk that a participating laboratory fails to qualify when it should, as defined by the simulation procedure. Five experienced reference laboratories were identified and tested a series of standardized reagents to derive the acceptance ranges for pass-fail criteria. This Standardized Proficiency Testing Program is the first available for the evaluation and documentation of assay equivalency for laboratories performing HIV-1 neutralizing antibody assays and may provide guidance for the development of future proficiency testing programs for other assay platforms.
Journal of Clinical Investigation | 2015
Sallie R. Permar; Youyi Fong; Nathan Vandergrift; Genevieve G. Fouda; Peter B. Gilbert; Robert Parks; Frederick H. Jaeger; Justin Pollara; Amanda Martelli; Brooke E. Liebl; Krissey E. Lloyd; Nicole L. Yates; R. Glenn Overman; Xiaoying Shen; Kaylan Whitaker; Haiyan Chen; Jamie Pritchett; Erika Solomon; Emma Friberg; Dawn J. Marshall; John F. Whitesides; Thaddeus C. Gurley; Tarra Von Holle; David Martinez; Fangping Cai; Amit Kumar; Shi Mao Xia; Xiaozhi Lu; Raul Louzao; Samantha Wilkes
Despite the wide availability of antiretroviral drugs, more than 250,000 infants are vertically infected with HIV-1 annually, emphasizing the need for additional interventions to eliminate pediatric HIV-1 infections. Here, we aimed to define humoral immune correlates of risk of mother-to-child transmission (MTCT) of HIV-1, including responses associated with protection in the RV144 vaccine trial. Eighty-three untreated, HIV-1-transmitting mothers and 165 propensity score-matched nontransmitting mothers were selected from the Women and Infants Transmission Study (WITS) of US nonbreastfeeding, HIV-1-infected mothers. In a multivariable logistic regression model, the magnitude of the maternal IgG responses specific for the third variable loop (V3) of the HIV-1 envelope was predictive of a reduced risk of MTCT. Neutralizing Ab responses against easy-to-neutralize (tier 1) HIV-1 strains also predicted a reduced risk of peripartum transmission in secondary analyses. Moreover, recombinant maternal V3-specific IgG mAbs mediated neutralization of autologous HIV-1 isolates. Thus, common V3-specific Ab responses in maternal plasma predicted a reduced risk of MTCT and mediated autologous virus neutralization, suggesting that boosting these maternal Ab responses may further reduce HIV-1 MTCT.
Journal of Virology | 2012
Lorenzo Diomede; S. Nyoka; C. Pastori; Lorenza Scotti; A. Zambon; G. Sherman; Clive M. Gray; Marcella Sarzotti-Kelsoe; Lucia Lopalco
ABSTRACT HIV-exposed, uninfected (EUN) babies born to HIV-infected mothers are examples of natural resistance to HIV infection. In this study, we evaluated the titer and neutralizing potential of gp41-specific maternal antibodies and their correlation with HIV transmission in HIV-infected mother-child pairs. Specific gp41-binding and -neutralizing antibodies were determined in a cohort of 74 first-time mother-child pairs, of whom 40 mothers were infected with HIV subtype C. Within the infected mother cohort, 16 babies were born infected and 24 were PCR negative and uninfected at birth (i.e., exposed but uninfected). Thirty-four HIV-uninfected and HIV-unexposed mother-child pairs were included as controls. All HIV-positive mothers and their newborns showed high IgG titers to linear epitopes within the HR1 region and to the membrane-proximal (MPER) domain of gp41; most sera also recognized the disulfide loop immunodominant epitope (IDE). Antibody titers to the gp41 epitopes were significantly lower in nontransmitting mothers (P < 0.01) and in the EUN babies (P < 0.005) than in HIV-positive mother-child pairs. Three domains of gp41, HR1, IDE, and MPER, elicited antibodies that were effectively transmitted to EUN babies. Moreover, in EUN babies, epitopes overlapping the 2F5 epitope (ELDKWAS), but not the 4E10 epitope, were neutralization targets in two out of four viruses tested. Our findings highlight important epitopes in gp41 that appear to be associated with exposure without infection and would be important to consider for vaccine design.
PLOS ONE | 2012
Daniel A. Ozaki; Hongmei Gao; Christopher A. Todd; Kelli M. Greene; David C. Montefiori; Marcella Sarzotti-Kelsoe
The Collaboration for AIDS Vaccine Discovery/Comprehensive Antibody – Vaccine Immune Monitoring Consortium (CAVD/CA-VIMC) assisted an international network of laboratories in transferring a validated assay used to judge HIV-1 vaccine immunogenicity in compliance with Good Clinical Laboratory Practice (GCLP) with the goal of adding quality to the conduct of endpoint assays for Human Immunodeficiency Virus I (HIV-1) vaccine human clinical trials. Eight Regional Laboratories in the international setting (Regional Laboratories), many located in regions where the HIV-1 epidemic is most prominent, were selected to implement the standardized, GCLP-compliant Neutralizing Antibody Assay for HIV-1 in TZM-bl Cells (TZM-bl NAb Assay). Each laboratory was required to undergo initial training and implementation of the immunologic assay on-site and then perform partial assay re-validation, competency testing, and undergo formal external audits for GCLP compliance. Furthermore, using a newly established external proficiency testing program for the TZM-bl NAb Assay has allowed the Regional Laboratories to assess the comparability of assay results at their site with the results of neutralizing antibody assays performed around the world. As a result, several of the CAVD/CA-VIMC Regional Laboratories are now in the process of conducting or planning to conduct the GCLP-compliant TZM-bl NAb Assay as an indicator of vaccine immunogenicity for ongoing human clinical trials.
Journal of Immunological Methods | 2014
Christopher A. Todd; Ana M. Sanchez; Ambrosia Garcia; Thomas N. Denny; Marcella Sarzotti-Kelsoe
The EQAPOL contract was awarded to Duke University to develop and manage global proficiency testing programs for flow cytometry-, ELISpot-, and Luminex bead-based assays (cytokine analytes), as well as create a genetically diverse panel of HIV-1 viral cultures to be made available to National Institutes of Health (NIH) researchers. As a part of this contract, EQAPOL was required to operate under Good Clinical Laboratory Practices (GCLP) that are traditionally used for laboratories conducting endpoint assays for human clinical trials. EQAPOL adapted these guidelines to the management of proficiency testing programs while simultaneously incorporating aspects of ISO/IEC 17043 which are specifically designed for external proficiency management. Over the first two years of the contract, the EQAPOL Oversight Laboratories received training, developed standard operating procedures and quality management practices, implemented strict quality control procedures for equipment, reagents, and documentation, and received audits from the EQAPOL Central Quality Assurance Unit. GCLP programs, such as EQAPOL, strengthen a laboratorys ability to perform critical assays and provide quality assessments of future potential vaccines.