Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Bellinzoni is active.

Publication


Featured researches published by Marco Bellinzoni.


Antimicrobial Agents and Chemotherapy | 2004

Rv2686c-Rv2687c-Rv2688c, an ABC Fluoroquinolone Efflux Pump in Mycobacterium tuberculosis

Maria Rosalia Pasca; Paola Guglierame; Fabio Arcesi; Marco Bellinzoni; Edda De Rossi; Giovanna Riccardi

ABSTRACT The Mycobacterium tuberculosis Rv2686c-Rv2687c-Rv2688c operon, encoding an ABC transporter, conferred resistance to ciprofloxacin and, to a lesser extent, norfloxacin, moxifloxacin, and sparfloxacin to Mycobacterium smegmatis. The resistance level decreased in the presence of the efflux pump inhibitors reserpine, carbonyl cyanide m-chlorophenylhydrazone, and verapamil. Energy-dependent efflux of ciprofloxacin from M. smegmatis cells containing the Rv2686c-Rv2687c-Rv2688c operon was observed.


Molecular Microbiology | 2008

Regulation of glutamate metabolism by protein kinases in mycobacteria

Helen M. O'Hare; Rosario Durán; Carlos Cerveñansky; Marco Bellinzoni; Anne Marie Wehenkel; Otto Pritsch; Gonzalo Obal; Jens Baumgartner; Jérôme Vialaret; Kai Johnsson; Pedro M. Alzari

Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit α‐ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD+‐specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence.


Tuberculosis | 2003

The TB structural genomics consortium: a resource for Mycobacterium tuberculosis biology

Thomas C. Terwilliger; Min S. Park; Geoffrey S. Waldo; Joel Berendzen; Li-Wei Hung; Chang-Yub Kim; Clare V Smith; James C. Sacchettini; Marco Bellinzoni; Roberto T. Bossi; E. De Rossi; Andrea Mattevi; Anna Milano; Giovanna Riccardi; Menico Rizzi; M.M. Roberts; A.R. Coker; G. Fossati; P. Mascagni; Anthony R. M. Coates; S.P. Wood; Celia W. Goulding; Marcin I. Apostol; D.H. Anderson; H.S. Gill; David Eisenberg; B. Taneja; Shekhar C. Mande; Ehmke Pohl; V. Lamzin

The TB Structural Genomics Consortium is an organization devoted to encouraging, coordinating, and facilitating the determination and analysis of structures of proteins from Mycobacterium tuberculosis. The Consortium members hope to work together with other M. tuberculosis researchers to identify M. tuberculosis proteins for which structural information could provide important biological information, to analyze and interpret structures of M. tuberculosis proteins, and to work collaboratively to test ideas about M. tuberculosis protein function that are suggested by structure or related to structural information. This review describes the TB Structural Genomics Consortium and some of the proteins for which the Consortium is in the progress of determining three-dimensional structures.


FEBS Letters | 2006

The structure of PknB in complex with mitoxantrone, an ATP-competitive inhibitor, suggests a mode of protein kinase regulation in mycobacteria

Annemarie Wehenkel; Pablo Fernandez; Marco Bellinzoni; Nathalie Barilone; Gilles Labesse; Mary Jackson; Pedro M. Alzari

Mycobacterium tuberculosis PknB is an essential receptor‐like protein kinase involved in cell growth control. Here, we demonstrate that mitoxantrone, an anthraquinone derivative used in cancer therapy, is a PknB inhibitor capable of preventing mycobacterial growth. The structure of the complex reveals that mitoxantrone partially occupies the adenine‐binding pocket in PknB, providing a framework for the design of compounds with potential therapeutic applications. PknB crystallizes as a ‘back‐to‐back’ homodimer identical to those observed in other structures of PknB in complex with ATP analogs. This organization resembles that of the RNA‐dependent protein kinase PKR, suggesting a mechanism for kinase activation in mycobacteria.


Molecular Microbiology | 2010

Biological and Structural Characterization of the Mycobacterium Smegmatis Nitroreductase Nfnb, and its Role in Benzothiazinone Resistance

Giulia Manina; Marco Bellinzoni; Maria Rosalia Pasca; João Neres; Anna Milano; Ana Luisa de Jesus Lopes Ribeiro; Silvia Buroni; Henrieta Škovierová; Petronela Dianišková; Katarína Mikušová; Jozef Marák; Vadim Makarov; David Giganti; Ahmed Haouz; Anna Paola Lucarelli; Giulia Degiacomi; Aurora Piazza; Laurent R. Chiarelli; Edda De Rossi; Elena G. Salina; Stewart T. Cole; Pedro M. Alzari; Giovanna Riccardi

Tuberculosis is still a leading cause of death in developing countries, for which there is an urgent need for new pharmacological agents. The synthesis of the novel antimycobacterial drug class of benzothiazinones (BTZs) and the identification of their cellular target as DprE1 (Rv3790), a component of the decaprenylphosphoryl‐β‐d‐ribose 2′‐epimerase complex, have been reported recently. Here, we describe the identification and characterization of a novel resistance mechanism to BTZ in Mycobacterium smegmatis. The overexpression of the nitroreductase NfnB leads to the inactivation of the drug by reduction of a critical nitro‐group to an amino‐group. The direct involvement of NfnB in the inactivation of the lead compound BTZ043 was demonstrated by enzymology, microbiological assays and gene knockout experiments. We also report the crystal structure of NfnB in complex with the essential cofactor flavin mononucleotide, and show that a common amino acid stretch between NfnB and DprE1 is likely to be essential for the interaction with BTZ. We performed docking analysis of NfnB‐BTZ in order to understand their interaction and the mechanism of nitroreduction. Although Mycobacterium tuberculosis seems to lack nitroreductases able to inactivate these drugs, our findings are valuable for the design of new BTZ molecules, which may be more effective in vivo.


Journal of Bacteriology | 2009

Structural Plasticity and Distinct Drug-Binding Modes of LfrR, a Mycobacterial Efflux Pump Regulator

Marco Bellinzoni; Silvia Buroni; Francis Schaeffer; Giovanna Riccardi; Edda De Rossi; Pedro M. Alzari

The TetR-like transcriptional repressor LfrR controls the expression of the gene encoding the Mycobacterium smegmatis efflux pump LfrA, which actively extrudes fluoroquinolones, cationic dyes, and anthracyclines from the cell and promotes intrinsic antibiotic resistance. The crystal structure of the apoprotein form of the repressor reveals a structurally asymmetric homodimer exhibiting local unfolding and a blocked drug-binding site, emphasizing the significant conformational plasticity of the protein necessary for DNA and multidrug recognition. Crystallographic and calorimetric studies of LfrR-drug complexes further confirm the intrinsic flexibility of the homodimer, which provides a dynamic mechanism to broaden multidrug binding specificity and may be a general property of transcriptional repressors regulating microbial efflux pump expression.


Molecular Microbiology | 2013

GarA is an essential regulator of metabolism in Mycobacterium tuberculosis

Marcello Ventura; Barbara Rieck; Francesca Boldrin; Giulia Degiacomi; Marco Bellinzoni; Nathalie Barilone; Faisal Alzaidi; Pedro M. Alzari; Riccardo Manganelli; Helen M. O'Hare

Alpha‐ketoglutarate is a key metabolic intermediate at the crossroads of carbon and nitrogen metabolism, whose fate is tightly regulated. In mycobacteria the protein GarA regulates the tricarboxylic acid cycle and glutamate synthesis by direct binding and regulation of three enzymes that use α‐ketoglutarate. GarA, in turn, is thought to be regulated via phosphorylation by protein kinase G and other kinases. We have investigated the requirement for GarA for metabolic regulation during growth in vitro and in macrophages. GarA was found to be essential to Mycobacterium tuberculosis, but dispensable in non‐pathogenic Mycobacterium smegmatis. Disruption of garA caused a distinctive, nutrient‐dependent phenotype, fitting with its proposed role in regulating glutamate metabolism. The data underline the importance of the TCA cycle and the balance with glutamate synthesis in M. tuberculosis and reveal vulnerability to disruption of these pathways.


Chemistry & Biology | 2015

Thiophenecarboxamide Derivatives Activated by EthA Kill Mycobacterium tuberculosis by Inhibiting the CTP Synthetase PyrG.

Giorgia Mori; Laurent R. Chiarelli; Marta Esposito; Vadim Makarov; Marco Bellinzoni; Ruben C. Hartkoorn; Giulia Degiacomi; Francesca Boldrin; Sean Ekins; Ana Luisa de Jesus Lopes Ribeiro; Leonardo B. Marino; Ivana Centárová; Zuzana Svetlíková; Jaroslav Blaško; Elena Kazakova; Alexander Yu. Lepioshkin; Nathalie Barilone; Giuseppe Zanoni; Alessio Porta; Marco Fondi; Renato Fani; Alain R. Baulard; Katarína Mikušová; Pedro M. Alzari; Riccardo Manganelli; Luiz Pedro S. de Carvalho; Giovanna Riccardi; Stewart T. Cole; Maria Rosalia Pasca

Summary To combat the emergence of drug-resistant strains of Mycobacterium tuberculosis, new antitubercular agents and novel drug targets are needed. Phenotypic screening of a library of 594 hit compounds uncovered two leads that were active against M. tuberculosis in its replicating, non-replicating, and intracellular states: compounds 7947882 (5-methyl-N-(4-nitrophenyl)thiophene-2-carboxamide) and 7904688 (3-phenyl-N-[(4-piperidin-1-ylphenyl)carbamothioyl]propanamide). Mutants resistant to both compounds harbored mutations in ethA (rv3854c), the gene encoding the monooxygenase EthA, and/or in pyrG (rv1699) coding for the CTP synthetase, PyrG. Biochemical investigations demonstrated that EthA is responsible for the activation of the compounds, and by mass spectrometry we identified the active metabolite of 7947882, which directly inhibits PyrG activity. Metabolomic studies revealed that pharmacological inhibition of PyrG strongly perturbs DNA and RNA biosynthesis, and other metabolic processes requiring nucleotides. Finally, the crystal structure of PyrG was solved, paving the way for rational drug design with this newly validated drug target.


Biology Open | 2013

Contactin 4, -5 and -6 differentially regulate neuritogenesis while they display identical PTPRG binding sites

Oriane Mercati; Anne Danckaert; Gwénaëlle André-Leroux; Marco Bellinzoni; Laura Gouder; Kazutada Watanabe; Yasushi Shimoda; Regis Grailhe; Fabrice de Chaumont; Thomas Bourgeron; Isabelle Cloëz-Tayarani

Summary The neural cell-adhesion molecules contactin 4, contactin 5 and contactin 6 are involved in brain development, and disruptions in contactin genes may confer increased risk for autism spectrum disorders (ASD). We describe a co-culture of rat cortical neurons and HEK293 cells overexpressing and delivering the secreted forms of rat contactin 4–6. We quantified their effects on the length and branching of neurites. Contactin 4–6 effects were different depending on the contactin member and duration of co-culture. At 4 days in culture, contactin 4 and -6 increased the length of neurites, while contactin 5 increased the number of roots. Up to 8 days in culture, contactin 6 progressively increased the length of neurites while contactin 5 was more efficient on neurite branching. We studied the molecular sites of interaction between human contactin 4, -5 or -6 and the human Protein Tyrosine Phosphatase Receptor Gamma (PTPRG), a contactin partner, by modeling their 3D structures. As compared to contactin 4, we observed differences in the Ig2 and Ig3 domains of contactin 5 and -6 with the appearance of an omega loop that could adopt three distinct conformations. However, interactive residues between human contactin 4–6 and PTPRG were strictly conserved. We did not observe any differences in PTPRG binding on contactin 5 and -6 either. Our data suggest that the differential contactin effects on neurite outgrowth do not result from distinct interactions with PTPRG. A better understanding of the contactin cellular properties should help elucidate their roles in ASD.


Biochemistry | 2010

A novel role of malonyl-ACP in lipid homeostasis.

Mariano Martinez; María-Eugenia Zaballa; Francis Schaeffer; Marco Bellinzoni; Daniela Albanesi; Gustavo E. Schujman; Alejandro J. Vila; Pedro M. Alzari; Diego de Mendoza

The FapR protein of Bacillus subtilis has been shown to play an important role in membrane lipid homeostasis. FapR acts as a repressor of many genes involved in fatty acid and phospholipid metabolism (the fap regulon). FapR binding to DNA is antagonized by malonyl-CoA, and thus FapR acts as a sensor of the status of fatty acid biosynthesis. However, malonyl-CoA is utilized for fatty acid synthesis only following its conversion to malonyl-ACP, which plays a central role in the initiation and elongation cycles carried out by the type II fatty acid synthase. Using in vitro transcription studies and isothermal titration calorimetry, we show here that malonyl-ACP binds FapR, disrupting the repressor-operator complex with an affinity similar to that of its precursor malonyl-CoA. NMR experiments reveal that there is no protein-protein recognition between ACP and FapR. These findings are consistent with the crystal structure of malonyl-ACP, which shows that the malonyl-phosphopantetheine moiety protrudes away from the protein core and thus can act as an effector ligand. Therefore, FapR regulates the expression of the fap regulon in response to the composition of the malonyl-phosphopantetheine pool. This mechanism ensures that fatty acid biosynthesis in B. subtilis is finely regulated at the transcriptional level by sensing the concentrations of the two first intermediates (malonyl-CoA and malonyl-ACP) in order to balance the production of membrane phospholipids.

Collaboration


Dive into the Marco Bellinzoni's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge