Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Rosario Durán is active.

Publication


Featured researches published by Rosario Durán.


Journal of Biological Chemistry | 2006

Reversible Post-translational Modification of Proteins by Nitrated Fatty Acids in Vivo

Carlos Batthyany; Francisco J. Schopfer; Paul R. S. Baker; Rosario Durán; Laura M. S. Baker; Yingying Huang; Carlos Cerveñansky; Bruce P. Branchaud; Bruce A. Freeman

Nitric oxide (.NO)-derived reactive species nitrate unsaturated fatty acids, yielding nitroalkene derivatives, including the clinically abundant nitrated oleic and linoleic acids. The olefinic nitro group renders these derivatives electrophilic at the carbon β to the nitro group, thus competent for Michael addition reactions with cysteine and histidine. By using chromatographic and mass spectrometric approaches, we characterized this reactivity by using in vitro reaction systems, and we demonstrated that nitroalkene-protein and GSH adducts are present in vivo under basal conditions in healthy human red cells. Nitro-linoleic acid (9-, 10-, 12-, and 13-nitro-9,12-octadecadienoic acids) (m/z 324.2) and nitro-oleic acid (9- and 10-nitro-9-octadecaenoic acids) (m/z 326.2) reacted with GSH (m/z 306.1), yielding adducts with m/z of 631.3 and 633.3, respectively. At physiological concentrations, nitroalkenes inhibited glyceraldehyde-3-phosphate dehydrogenase (GAPDH), which contains a critical catalytic Cys (Cys-149). GAPDH inhibition displayed an IC50 of ∼3 μmm for both nitroalkenes, an IC50 equivalent to the potent thiol oxidant peroxynitrite (ONOO-) and an IC50 30-fold less than H2O2, indicating that nitroalkenes are potent thiol-reactive species. Liquid chromatography-mass spectrometry analysis revealed covalent adducts between fatty acid nitroalkene derivatives and GAPDH, including at the catalytic Cys-149. Liquid chromatography-mass spectrometry-based proteomic analysis of human red cells confirmed that nitroalkenes readily undergo covalent, thiol-reversible post-translational modification of nucleophilic amino acids in GSH and GAPDH in vivo. The adduction of GAPDH and GSH by nitroalkenes significantly increased the hydrophobicity of these molecules, both inducing translocation to membranes and suggesting why these abundant derivatives had not been detected previously via traditional high pressure liquid chromatography analysis. The occurrence of these electrophilic nitroalkylation reactions in vivo indicates that this reversible post-translational protein modification represents a new pathway for redox regulation of enzyme function, cell signaling, and protein trafficking.


Molecular Microbiology | 2003

PknB kinase activity is regulated by phosphorylation in two Thr residues and dephosphorylation by PstP, the cognate phospho‐Ser/Thr phosphatase, in Mycobacterium tuberculosis

Brigitte Boitel; Miguel Ortiz-Lombardía; Rosario Durán; Frédérique Pompeo; Stewart T. Cole; Carlos Cerveñansky; Pedro M. Alzari

Bacterial genomics revealed the widespread presence of eukaryotic‐like protein kinases and phosphatases in prokaryotes, but little is known on their biochemical properties, regulation mechanisms and physiological roles. Here we focus on the catalytic domains of two trans‐membrane enzymes, the Ser/Thr protein kinase PknB and the protein phosphatase PstP from Mycobacterium tuberculosis. PstP was found to specifically dephosphorylate model phospho‐Ser/Thr substrates in a Mn2+‐dependent manner. Autophosphorylated PknB was shown to be a substrate for Pstp and its kinase activity was affected by PstP‐mediated dephosphorylation. Two threonine residues in the PknB activation loop, found to be mostly disordered in the crystal structure of this kinase, namely Thr171 and Thr173, were identified as the target for PknB autophosphorylation and PstP dephosphorylation. Replacement of these threonine residues by alanine significantly decreased the kinase activity, confirming their direct regulatory role. These results indicate that, as for eukaryotic homologues, phosphorylation of the activation loop provides a regulation mechanism of mycobacterial kinases and strongly suggest that PknB and PstP could work as a functional pair in vivo to control mycobacterial cell growth.


Journal of the American Chemical Society | 2008

Site-specific interactions of Cu(II) with α and β-synuclein: bridging the molecular gap between metal binding and aggregation.

Andres Binolfi; Gonzalo R. Lamberto; Rosario Durán; Liliana Quintanar; Carlos W. Bertoncini; José M. Souza; Carlos Cerveñansky; Markus Zweckstetter; Christian Griesinger; Claudio O. Fernández

The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinsons disease (PD) and other neurodegenerative synucleinopathies. Protein-metal interactions play a critical role in AS aggregation and might represent the link between the pathological processes of protein aggregation and oxidative damage. Our previous studies established a hierarchy in AS-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. In this work, we have addressed unresolved structural details related to the binding specificity of Cu(II) through the design of site-directed and domain-truncated mutants of AS and by the characterization of the metal-binding features of its natural homologue beta-synuclein (BS). The structural properties of the Cu(II) complexes were determined by the combined application of nuclear magnetic resonance, electron paramagnetic resonance, UV-vis, circular dichroism spectroscopy, and matrix-assisted laser desorption ionization mass spectrometry (MALDI MS). Two independent, noninteracting copper-binding sites with significantly different affinities for the metal ion were detected in the N-terminal regions of AS and BS. MALDI MS provided unique evidence for the direct involvement of Met1 as the primary anchoring residue for Cu(II) in both proteins. Comparative spectroscopic analysis of the two proteins allowed us to deconvolute the Cu(II) binding modes and unequivocally assign the higher-affinity site to the N-terminal amino group of Met1 and the lower-affinity site to the imidazol ring of the sole His residue. Through the use of competitive chelators, the affinity of the first equivalent of bound Cu(II) was accurately determined to be in the submicromolar range for both AS and BS. Our results prove that Cu(II) binding in the C-terminal region of synucleins represents a nonspecific, very low affinity process. These new insights into the bioinorganic chemistry of PD are central to an understanding of the role of Cu(II) in the fibrillization process of AS and have implications for the molecular mechanism by which BS might inhibit AS amyloid assembly.


Molecular Microbiology | 2008

Regulation of glutamate metabolism by protein kinases in mycobacteria

Helen M. O'Hare; Rosario Durán; Carlos Cerveñansky; Marco Bellinzoni; Anne Marie Wehenkel; Otto Pritsch; Gonzalo Obal; Jens Baumgartner; Jérôme Vialaret; Kai Johnsson; Pedro M. Alzari

Protein kinase G of Mycobacterium tuberculosis has been implicated in virulence and in regulation of glutamate metabolism. Here we show that this kinase undergoes a pattern of autophosphorylation that is distinct from that of other M. tuberculosis protein kinases characterized to date and we identify GarA as a substrate for phosphorylation by PknG. Autophosphorylation of PknG has little effect on kinase activity but promotes binding to GarA, an interaction that is also detected in living mycobacteria. PknG phosphorylates GarA at threonine 21, adjacent to the residue phosphorylated by PknB (T22), and these two phosphorylation events are mutually exclusive. Like the homologue OdhI from Corynebacterium glutamicum, the unphosphorylated form of GarA is shown to inhibit α‐ketoglutarate decarboxylase in the TCA cycle. Additionally GarA is found to bind and modulate the activity of a large NAD+‐specific glutamate dehydrogenase with an unusually low affinity for glutamate. Previous reports of a defect in glutamate metabolism caused by pknG deletion may thus be explained by the effect of unphosphorylated GarA on these two enzyme activities, which may also contribute to the attenuation of virulence.


Inorganic Chemistry | 2010

Bioinorganic Chemistry of Parkinson's Disease: Structural Determinants for the Copper-Mediated Amyloid Formation of Alpha-Synuclein

Andres Binolfi; Esaú E. Rodriguez; Daniela Valensin; Nicola D'Amelio; Emiliano Ippoliti; Gonzalo Obal; Rosario Durán; Alessandra Magistrato; Otto Pritsch; Markus Zweckstetter; Gianni Valensin; Paolo Carloni; Liliana Quintanar; Christian Griesinger; Claudio O. Fernández

The aggregation of alpha-synuclein (AS) is a critical step in the etiology of Parkinsons disease (PD). A central, unresolved question in the pathophysiology of PD relates to the role of AS-metal interactions in amyloid fibril formation and neurodegeneration. Our previous works established a hierarchy in alpha-synuclein-metal ion interactions, where Cu(II) binds specifically to the protein and triggers its aggregation under conditions that might be relevant for the development of PD. Two independent, non-interacting copper-binding sites were identified at the N-terminal region of AS, with significant difference in their affinities for the metal ion. In this work we have solved unknown details related to the structural binding specificity and aggregation enhancement mediated by Cu(II). The high-resolution structural characterization of the highest affinity N-terminus AS-Cu(II) complex is reported here. Through the measurement of AS aggregation kinetics we proved conclusively that the copper-enhanced AS amyloid formation is a direct consequence of the formation of the AS-Cu(II) complex at the highest affinity binding site. The kinetic behavior was not influenced by the His residue at position 50, arguing against an active role for this residue in the structural and biological events involved in the mechanism of copper-mediated AS aggregation. These new findings are central to elucidate the mechanism through which the metal ion participates in the fibrillization of AS and represent relevant progress in the understanding of the bioinorganic chemistry of PD.


Biochimie | 2008

A distinctive repertoire of cathepsins is expressed by juvenile invasive Fasciola hepatica.

Martín Cancela; Daniel Acosta; Gabriel Rinaldi; Edileusa Silva; Rosario Durán; Leda Roche; Arnaldo Zaha; Carlos Carmona; José F. Tort

Secreted cysteine proteases are relevant actors in parasite biology, taking part in critical host colonization roles such as traversing tissue barriers, immune evasion and nutrient digestion. In the trematode Fasciola hepatica, the initial step to successful infection of the mammalian host is the excystment of metacercariae and the invasion through the intestinal wall by the newly excysted juveniles (NEJ). While the cathepsin L-like cysteine proteinases secreted by the adult fluke have been extensively characterized, the cataloguing and description of the cathepsins B and L reported in the invasive stages is only sketchy. To identify the cathepsins expressed during excystment and early invasion we constructed cDNA libraries encoding NEJ cathepsins B and L. We found two cathepsin L-like cysteine proteinases (CL3, CL4) and three cathepsins B (CB1, CB2, CB3) which are predominantly expressed in NEJ. Phylogenetic analysis showed that NEJ-expressed cathepsins L constitute a well-defined clade separate from the adult enzymes. Excystment induction resulted in a significant increment in activity towards cathepsin-specific fluorogenic substrates in metacercariae homogenates, consistent with the detection of precursor and mature forms of cathepsins B and L before and after induction. In NEJ culture supernatants, protein and relative activity profiles show subtle changes during the first 48 h, with prevalence of cathepsin L-like activity, although cathepsins CB3 and CL3 were detected by mass spectrometry. Noticeably, the hydrolysis of a substrate with proline in the P2 position was predominant, a property only shared with adult CL2 and vertebrate cathepsin K among the C1A subfamily of cysteine proteases. Collectively these mRNA, protein and enzymatic data demonstrate the existence of a NEJ-specific repertoire of cathepsins expressed early in invasion, distinct to those used by other trematodes, potentially relevant for specific vaccine and chemotherapy design. The diversity of proteases employed by trematodes in the invasion process is discussed.


Journal of the American Chemical Society | 2011

Exploring the structural details of Cu(I) binding to α-synuclein by NMR spectroscopy.

Andres Binolfi; Ariel A. Valiente-Gabioud; Rosario Durán; Markus Zweckstetter; Christian Griesinger; Claudio O. Fernández

The aggregation of α-synuclein (AS) is selectively enhanced by copper in vitro, and the interaction is proposed to play a potential role in vivo. In this work, we report the structural, residue-specific characterization of Cu(I) binding to AS and demonstrate that the protein is able to bind Cu(I) with relatively high affinity in a coordination environment that involves the participation of Met1 and Met5 residues. This knowledge is a key to understanding the structural-aggregation basis of the copper-catalyzed oxidation of AS.


Neurochemical Research | 2002

Effects of muscarinic toxins MT1 and MT2 from green mamba on different muscarinic cholinoceptors.

Alan L. Harvey; Edgar Kornisiuk; Karen N. Bradley; Carlos Cerveñansky; Rosario Durán; M. Adrover; Gonzalo Sánchez; Diana Jerusalinsky

MT1 and MT2, polypeptides from green mamba venom, known to bind to muscarinic cholinoceptors, behave like muscarinic agonists in an inhibitory avoidance task in rats. We have further characterised their functional effects using different preparations. MT1 and MT2 behaved like relatively selective muscarinic M1 receptor agonists in rabbit vas deferens, but their effects were not reversed by washing or prevented by muscarinic antagonists, although allosteric modulators altered responses to MT1. Radioligand binding experiments indicated that both toxins irreversibly inhibited [3H]N-methylscopolamine binding to cloned muscarinic M1 and M4 receptors, and reduced binding to M5 subtype with lower affinity, while they reversibly inhibited the binding of [3H]prazosin to rat cerebral cortex and vas deferens, with 20 fold lower affinity. High concentrations of MT1 reversibly blocked responses of vas deferens to noradrenaline. MT1 and MT2 appear to irreversibly activate muscarinic M1 receptors at a site distinct from the classical one, and to have affinity for some α-adrenoceptors.


Journal of Proteomics | 2011

Serine/threonine protein kinase PrkA of the human pathogen Listeria monocytogenes: Biochemical characterization and identification of interacting partners through proteomic approaches

Analía Lima; Rosario Durán; Gustavo E. Schujman; Maria Julia Marchissio; María Magdalena Portela; Gonzalo Obal; Otto Pritsch; Diego de Mendoza; Carlos Cerveñansky

Listeria monocytogenes is the causative agent of listeriosis, a very serious food-borne human disease. The analysis of the proteins coded by the L. monocytogenes genome reveals the presence of two eukaryotic-type Ser/Thr-kinases (lmo1820 and lmo0618) and a Ser/Thr-phosphatase (lmo1821). Protein phosphorylation regulates enzyme activities and protein interactions participating in physiological and pathophysiological processes in bacterial diseases. However in the case of L. monocytogenes there is scarce information about biochemical properties of these enzymes, as well as the physiological processes that they modulate. In the present work the catalytic domain of the protein coded by lmo1820 was produced as a functional His(6)-tagged Ser/Thr-kinase, and was denominated PrkA. PrkA was able to autophosphorylate specific Thr residues within its activation loop sequence. A similar autophosphorylation pattern was previously reported for Ser/Thr-kinases from related prokaryotes, whose role in kinase activity and substrate recruitment was demonstrated. We studied the kinase interactome using affinity chromatography and proteomic approaches. We identified 62 proteins that interact, either directly or indirectly, with the catalytic domain of PrkA, including proteins that participate in carbohydrates metabolism, cell wall metabolism and protein synthesis. Our results suggest that PrkA could be involved in the regulation of a variety of fundamental biological processes.


PLOS ONE | 2009

A Family of Diverse Kunitz Inhibitors from Echinococcus granulosus Potentially Involved in Host-Parasite Cross-Talk

Silvia A. González; Martín Fló; Mariana Margenat; Rosario Durán; Gualberto González-Sapienza; Martín Graña; John S. Parkinson; Rick M. Maizels; Gustavo Salinas; Beatriz Alvarez; Cecilia Fernández

The cestode Echinococcus granulosus, the agent of hydatidosis/echinococcosis, is remarkably well adapted to its definitive host. However, the molecular mechanisms underlying the successful establishment of larval worms (protoscoleces) in the dog duodenum are unknown. With the aim of identifying molecules participating in the E. granulosus-dog cross-talk, we surveyed the transcriptomes of protoscoleces and protoscoleces treated with pepsin at pH 2. This analysis identified a multigene family of secreted monodomain Kunitz proteins associated mostly with pepsin/H+-treated worms, suggesting that they play a role at the onset of infection. We present the relevant molecular features of eight members of the E. granulosus Kunitz family (EgKU-1 – EgKU-8). Although diverse, the family includes three pairs of close paralogs (EgKU-1/EgKU-4; EgKU-3/EgKU-8; EgKU-6/EgKU-7), which would be the products of recent gene duplications. In addition, we describe the purification of EgKU-1 and EgKU-8 from larval worms, and provide data indicating that some members of the family (notably, EgKU-3 and EgKU-8) are secreted by protoscoleces. Detailed kinetic studies with native EgKU-1 and EgKU-8 highlighted their functional diversity. Like most monodomain Kunitz proteins, EgKU-8 behaved as a slow, tight-binding inhibitor of serine proteases, with global inhibition constants (K I *) versus trypsins in the picomolar range. In sharp contrast, EgKU-1 did not inhibit any of the assayed peptidases. Interestingly, molecular modeling revealed structural elements associated with activity in Kunitz cation-channel blockers. We propose that this family of inhibitors has the potential to act at the E. granulosus-dog interface and interfere with host physiological processes at the initial stages of infection.

Collaboration


Dive into the Rosario Durán's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge