Marco Capodici
University of Palermo
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Marco Capodici.
Bioresource Technology | 2016
Giorgio Mannina; Marco Capodici; Alida Cosenza; D. Di Trapani; Gaspare Viviani
In this work, a sequential batch membrane bioreactor pilot plant is investigated to analyze the effect of a gradual increase in salinity on carbon and nutrient removal, membrane fouling and biomass kinetic parameters. The salinity was increased by 2gNaClL(-1) per week up to 10gNaClL(-1). The total COD removal efficiency was quite high (93%) throughout the experiment. A gradual biomass acclimation to the salinity level was observed during the experiment, highlighting the good recovery capabilities of the system. Nitrification was also influenced by the increase in salinity, with a slight decrease in nitrification efficiency (the lowest value was obtained at 10gNaClL(-1) due to lower nitrifier activity). Irreversible cake deposition was the predominant fouling mechanism observed during the experiment. Respirometric tests exhibited a stress effect due to salinity, with a reduction in the respiration rates observed (from 8.85mgO2L(-1)h(-1) to 4mgO2L(-1)h(-1)).
Bioresource Technology | 2015
Marco Capodici; G. Di Bella; D. Di Trapani; Michele Torregrossa
The effect of intermittent aeration (IA) on a MBR system was investigated. The study was aimed at analyzing different working conditions and the influence of different IA cycles on the biological performance of the MBR pilot plant, in terms of organic carbon and ammonium removal as well as extracellular polymeric substances (EPSs) production. The membrane modules were placed in a separate compartment, continuously aerated. This configuration allowed to disconnect from the filtration stage the biological phenomena occurring into the IA bioreactor. The observed results highlighted good efficiencies, in terms of organic carbon and ammonium removal. It was noticed a significant soluble microbial products (SMPs) release, likely related to the higher metabolic stress that anoxic conditions exerted on the biomass. However, the proposed configuration, with the membranes in a separate compartment, allowed to reduce the EPSs in the membrane tank even during the non-aerated phase, thus lowering fouling development.
Bioresource Technology | 2017
Santo Fabio Corsino; Marco Capodici; Michele Torregrossa; Gaspare Viviani
The modification of the physical properties of aerobic granular sludge treating fish-canning wastewater is discussed in this paper. The structure and composition of the Extracellular Polymeric Substances (EPSs) were analyzed at different salinity levels and related to granules stability. Results outlined that the total EPSs content increased with salinity, despite the EPSs increment was not proportional to the salt concentration. Moreover, the EPSs structure was significantly modified by salinity, leading to a gradual increase of the not-bound EPSs fraction, which was close to the 50% of the total EPSs content at 75gNaClL-1. The increasing salt concentration modified also the EPSs composition, causing the gradual reduction of protein content resulting in a decrease of granule hydrophobicity. The results pointed out that the granules stability significantly reduced above 50gNaClL-1, suggesting the existence of a salinity threshold above which granules stability is compromised.
Journal of Environmental Management | 2016
Santo Fabio Corsino; Marco Capodici; Michele Torregrossa; Gaspare Viviani
This work aims to investigate the stability of aerobic granular sludge in the long term, focusing on the clogging of the granular sludge porosity exerted by the extracellular polymeric substances (EPSs). The effects of different cycle lengths (short and long-term cycle) on the granular sludge stability were investigated. Results obtained outlined that during the short duration cycle, the formation and breakage of the aerobic granules were continuously observed. During this period, the excess of EPS production contributed to the clogging of the granules porosity, causing their breakage in the long run. During the long-duration cycle, the extended famine period entailed a greater EPSs consumption by bacteria, thus limiting the clogging of the porosity, and allowed obtaining stable aerobic granules. Reported results demonstrated that an excess in EPSs content could be detrimental to the stability of aerobic granular sludge in the long-term.
Water Science and Technology | 2014
Marco Capodici; D. Di Trapani; Gaspare Viviani
Aged or mature leachate, produced by old landfills, can be very refractory; for this reason mature leachate is difficult to treat alone, but it can be co-treated with sewage or domestic wastewater. The aim of the study was to investigate the feasibility of leachate co-treatment with synthetic wastewater, in terms of process performance and biomass activity, by means of respirometric techniques. Two sequencing batch reactors (SBRs), named SBR1 and SBR2, were fed with synthetic wastewater and two different percentages of landfill leachate (respectively 10% and 50% v v(-1) in SBR1 and SBR2). The results showed good chemical oxygen demand (COD) removal efficiency for both reactors, with average COD removals equal to 91.64 and 89.04% respectively for SBR1 and SBR2. Furthermore, both SBRs showed good ammonia-nitrogen (AN) removal efficiencies, higher than 60%, thus confirming the feasibility of leachate co-treatment with a readily biodegradable wastewater. Significant respiration rates were obtained for the heterotrophic population (average values of maximum oxygen uptake rate equal to 37.30 and 56.68 mg O2 L(-1) h(-1) respectively for SBR1 and SBR2), thus suggesting the feasibility of leachate co-treatment with synthetic wastewater.
Desalination and Water Treatment | 2016
Marco Capodici; Giorgio Mannina; Michele Torregrossa
AbstractSludge dewatering represents, nowadays, one of the greatest operational cost to wastewater treatment cycle. Physical–chemical and biological parameters are recognized to influence the sludge dewaterability. However, many authors agree in identifying the sludge origin as one of the main aspect involved in sludge dewaterability. Indeed, the sludge origin such as the processes involved in liquid–solid separation, seriously affect the sludge features. In order to elucidate the key factors influencing the dewaterability process, the present work is aimed to investigate the influence of the treatment plant lay-out on sludge dewaterability. The analyzed sludge samples were derived from four conventional activated sludge and two membrane bioreactor wastewater treatment plants. Experimental investigation was focused to highlight difference in sludge dewaterability derived from the application of European Standards adopted for sludge characterization. The achieved results confirmed the complexity of the int...
Bioresource Technology | 2018
Giorgio Mannina; Marco Capodici; Alida Cosenza; D. Di Trapani
The influence of the main operational variables on N2O emissions from an Integrated Fixed Film Activated Sludge University of Cape Town membrane Bioreactor pilot plant was studied. Nine operational cycles (total duration: 340days) were investigated by varying the value of the mixed liquor sludge retention time (SRT) (Cycles 1-3), the feeding ratio between carbon and nitrogen (C/N) (Cycles 4-6) and simultaneously the hydraulic retention time (HRT) and the SRT (Cycles 7-9). Results show a huge variability of the N2O concentration in liquid and off-gas samples (ranged from 10-1μgN2O-NL-1 to 103μgN2O-NL-1). The maximum N2O concentration (1228μgN2O-NL-1) in the off-gas samples occurred in the anoxic reactor at the lowest C/N value confirming that unbalanced C/N promotes the N2O emission during denitrification. The aerated reactors (aerobic and MBR) have been the major N2O emitters during all the three Phases.
Journal of Environmental Engineering | 2016
Marco Capodici; G. Di Bella; D. Di Trapani; Michele Torregrossa; Gaspare Viviani
AbstractA membrane bioreactor (MBR) pilot plant was operated in two subsequent experimental periods (namely, Periods I and II) with different start-up and sludge withdrawal strategies to study its peculiar biokinetic behavior by using respirometric techniques. Two extreme operational conditions were chosen to investigate the different biomass activity under dynamic or pseudostationary conditions during and after the start-up phases. Particularly, the MBR pilot plant was operated with the same volumetric loading rate (VLR) and permeate flux but differently managed during the start-up phase. In Period I, the MBR pilot plant was started up without sludge inoculum and operated without sludge withdrawals; on the contrary, in Period II the MBR pilot plant was started up with sludge inoculum and operated with regular sludge withdrawals. The obtained results highlighted that the different start-up strategies significantly affected the value of the yield coefficient, the storage phenomena, the decay coefficient, a...
Science of The Total Environment | 2018
Marco Capodici; Alessia Avona; Vito Armando Laudicina; Gaspare Viviani
Bio-trenches are a sustainable option for treating nitrate contamination in groundwater. However, a possible side effect of this technology is the production of nitrous oxide, a greenhouse gas that can be found both dissolved in the liquid effluent as well as emitted as off gas. The aim of this study was to analyze NO3- removal and N2O production in lab-scale column trials. The column contained olive nut as organic carbon media. The experimental study was divided into three phases (I, II and III) each characterized by different inlet NO3- concentrations (30, 50, 75mgNO3-NL-1 respectively). Sampling ports deployed along the length of the column allowed to observe the denitrification process as well as the formation and consumption of intermediate products, such as nitrite (NO2-) and nitrous oxide (N2O). In particular, it was observed that N2O production represent only a small fraction of removed NO3- during Phase I and II, both for dissolved (0.007%) and emitted (0.003%) phase, and it was recorded a high denitrification efficiency, over 99%. Nevertheless, significantly higher values were recorded for Phase 3 concerning emitted phase (0.018%). This fact is due to increased inlet concentration which resulted in a carbon limitation and in a consequent decrease in denitrification efficiency (76%).
Journal of Environmental Engineering | 2018
Ludovico Pontoni; Stefano Papirio; Giorgio D’Alessandro; Donatella Caniani; Riccardo Gori; Giorgio Mannina; Marco Capodici; Salvatore Nicosia; Massimiliano Fabbricino; Francesco Pirozzi; Giovanni Esposito
AbstractThe dewaterability of sludge from two conventional activated sludge (CAS) and three membrane bioreactor (MBR)–based wastewater treatment plants is investigated prior to and after anaerobic ...