Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Santo Fabio Corsino is active.

Publication


Featured researches published by Santo Fabio Corsino.


Bioresource Technology | 2017

Physical properties and Extracellular Polymeric Substances pattern of aerobic granular sludge treating hypersaline wastewater

Santo Fabio Corsino; Marco Capodici; Michele Torregrossa; Gaspare Viviani

The modification of the physical properties of aerobic granular sludge treating fish-canning wastewater is discussed in this paper. The structure and composition of the Extracellular Polymeric Substances (EPSs) were analyzed at different salinity levels and related to granules stability. Results outlined that the total EPSs content increased with salinity, despite the EPSs increment was not proportional to the salt concentration. Moreover, the EPSs structure was significantly modified by salinity, leading to a gradual increase of the not-bound EPSs fraction, which was close to the 50% of the total EPSs content at 75gNaClL-1. The increasing salt concentration modified also the EPSs composition, causing the gradual reduction of protein content resulting in a decrease of granule hydrophobicity. The results pointed out that the granules stability significantly reduced above 50gNaClL-1, suggesting the existence of a salinity threshold above which granules stability is compromised.


Bioresource Technology | 2017

Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater

Santo Fabio Corsino; Alessandro di Biase; Tanner Ryan Devlin; Giulio Munz; Michele Torregrossa; Jan A. Oleszkiewicz

Results obtained from three aerobic granular sludge reactors treating brewery wastewater are presented. Reactors were operated for 60d days in each of the two periods under different cycle duration: (Period I) short 6h cycle, and (Period II) long 12h cycle. Organic loading rates (OLR) varying from 0.7kgCODm-3d-1 to 4.1kgCODm-3d-1 were tested. During Period I, granules successfully developed in all reactors, however, results revealed that the feast and famine periods were not balanced and the granular structure deteriorated and became irregular. During Period II at decreased 12h cycle time, granules were observed to develop again with superior structural stability compared to the short 6h cycle time, suggesting that a longer starvation phase enhanced production of proteinaceous EPS. Overall, the extended famine conditions encouraged granule stability, likely because long starvation period favours bacteria capable of storage of energy compounds.


Bioresource Technology | 2016

Study of aerobic granular sludge stability in a continuous-flow membrane bioreactor.

Santo Fabio Corsino; Riccardo Campo; G. Di Bella; Michele Torregrossa; Gaspare Viviani

A granular continuous-flow membrane bioreactor with a novel hydrodynamic configuration was developed to evaluate the stability of aerobic granular sludge (AGS). Under continuous-flow operation (Period I), AGS rapidly lost their structural integrity resulting in loose and fluffy microbial aggregates in which filamentous bacteria were dominant. The intermittent feeding (Period II) allowed obtaining the succession of feast and famine conditions that favored the increase in AGS stability. Although no further breakage occurred, the formation of new granules was very limited, owing to the absence of the hydraulic selection pressure. These results noted the necessity to ensure, on the one hand the succession of feast/famine conditions, and on the other, the hydraulic selection pressure that allows flocculent sludge washout. This preliminary study shows that the proposed configuration could meet the first aspect; in contrast, biomass selection needs to be improved.


Journal of Environmental Management | 2016

Fate of aerobic granular sludge in the long-term: The role of EPSs on the clogging of granular sludge porosity

Santo Fabio Corsino; Marco Capodici; Michele Torregrossa; Gaspare Viviani

This work aims to investigate the stability of aerobic granular sludge in the long term, focusing on the clogging of the granular sludge porosity exerted by the extracellular polymeric substances (EPSs). The effects of different cycle lengths (short and long-term cycle) on the granular sludge stability were investigated. Results obtained outlined that during the short duration cycle, the formation and breakage of the aerobic granules were continuously observed. During this period, the excess of EPS production contributed to the clogging of the granules porosity, causing their breakage in the long run. During the long-duration cycle, the extended famine period entailed a greater EPSs consumption by bacteria, thus limiting the clogging of the porosity, and allowed obtaining stable aerobic granules. Reported results demonstrated that an excess in EPSs content could be detrimental to the stability of aerobic granular sludge in the long-term.


Journal of Environmental Management | 2018

Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability

Santo Fabio Corsino; D. Di Trapani; Michele Torregrossa; Gaspare Viviani

In the present paper, the feasibility of citrus wastewater treatment with aerobic granular sludge sequencing batch reactors (AGSBR) was investigated. Two AGSBRs (named R1 and R2, respectively) were operated for 90 days under different organic loading rates (OLR) and pH in two experimental periods. The OLR ranged approximately between 3.0 kg TCOD m-3d-1 and 7 kg TCOD m-3d-1 during Period I, whereas between 7 kg TCOD m-3d-1 and 15 kg TCOD m-3d-1 during Period II. pH was maintained at 7.0 and 5.5 in R1 and R2, respectively. The results revealed that under high OLR and unbalanced feast/famine regime (Period I), the development of fast-growing microorganisms (fungi and filamentous bacteria) was favoured in both reactors, resulting in granular sludge instability. An extended famine phase and a proper balancing between feast and famine periods (Period II) were favourable for the development of bacteria with low growth rates (0.05 d-1) thus enhancing the granules stability. To the benefit of granular sludge stability and effluent quality, the length of the feast period should not exceed 25% of cycle length. Moreover, under OLR lower than 7 kg TCOD m-3d-1 the removal efficiency of total chemical oxygen demand (TCOD) was approximately 90% in R1 and R2 and no side effects on the organic carbon removal performance related to the pH were observed. In contrast, at higher OLR a significant decrease in the removal efficiency (from 90% to less than 75%) was observed in R2. Results revealed also that under low pH, hydrolysis of proteins occurred and a decrease in the biological kinetic rates proportionally to the applied OLR was observed.


Bioresource Technology | 2018

Biological minimization of excess sludge in a membrane bioreactor: Effect of plant configuration on sludge production, nutrient removal efficiency and membrane fouling tendency

Taissa Silva de Oliveira; Santo Fabio Corsino; D. Di Trapani; Michele Torregrossa; Gaspare Viviani

Excess sludge minimization was studied in a MBR with pre-denitrification scheme. Sludge minimization, nitrogen removal performance and membrane fouling tendency were investigated in two configurations, characterized by a different position of the sludge retention reactor (SRR). In particular, the SRR was placed: i) in the return activated sludge line (Anaerobic Side-Stream Reactor - ASSR configuration) and ii) in the mainstream between the anoxic and aerobic reactor (Anaerobic Main-Stream Reactor - AMSR configuration). The achieved results demonstrated that the ASSR enabled a higher excess sludge reduction (74% vs 32%), while achieving lower biological nitrogen removal (BNR) (TN = 63% vs 78%) and membrane fouling tendency (FR = 2.1 · 1012 m-1 d-1vs 4.0 · 1011 m-1 d-1) than the AMSR. It was found that metabolism uncoupling, destruction of EPS and endogenous decay simultaneously occurred in the ASSR. Conversely, selective enrichment of bacteria population with low biomass yield was found the main mechanism affecting sludge minimization in the AMSR.


Frontiers International Conference on Wastewater Treatment and Modelling | 2017

Biokinetic Behaviour of Autochthonous Halophilic Biomass at Different Salinity: Comparison Between Activated Sludge and Granular Sludge Systems

Santo Fabio Corsino; Marco Capodici; Michele Torregrossa; Gaspare Viviani

The main goal of this study was the evaluation of the impact of increasing salinity on halophilic biomass in forms of flocculent and granular sludge for the treatment of hypersaline fish-canning wastewater, focusing on the metabolic behavior of autotrophic biomass. For this purpose, two sequencing batch reactors, one with aerobic granular sludge (GSBR) and the other with flocculent activated sludge (SBR) were monitored. In both reactors, a halophilic biomass was cultivated from a real saline wastewater collected from a fish-canning industry. The salt concentration was stepwise increased (2 gNaCl L-1) from 30 gNaCl L-1 to 50 gNaCl L-1. Therefore, ammonia and nitrite uptake rates for granular and flocculent biomass were evaluated at each salinity increase. Both AUR and NUR tests revealed a high metabolic activity despite the extreme salinity environment. AUR ranged between 4.6 mgNH4-N gVSS-1 h-1 and 3.10 mgNH4-N gVSS-1 h-1 in the GSBR showing, on the whole, a decreasing trend with salinity increasing. In the SBR instead, AUR was mainly affected by the biomass ageing, while a slight dependency of salinity was observed only above 46 gNaCl L-1 when it started in decreasing. The nitrite uptake rate did not show any significant connection with the increasing salinity.


Frontiers International Conference on Wastewater Treatment and Modelling | 2017

Application of the Oxic-Settling-Anaerobic Process in a Membrane Bioreactor for Excess Sludge Reduction

T. Silva de Oliveira; Santo Fabio Corsino; D. Di Trapani; Maria Valeria Torregrossa

The main goal of this study was the evaluation of the excess sludge reduction in a MBR for biological nitrogen removal (BNR) through the implementation of the Oxic-Settling-Anaerobic (OSA) process. For this purpose, a MBR pilot plant (42 L volume) was realized according to a pre-denitrification scheme. The whole experimentation was divided into two periods, named Period 1 and Period 2, respectively. In Period 1 the pilot plant was started-up and the excess sludge production was evaluated. In Period 2 the plant configuration was partially modified by inserting an anaerobic reactor into the return activated sludge (RAS) line to realize an OSA configuration. In Period 1, the Yobs resulted equal to 0.39 gVSS g−1CODremoved, in accordance with the reference values for MBR plants reported in the literature (Wang et al. 2013). Similarly, all the kinetic and stoichiometric parameters, for both autotrophic and heterotrophic biomass, resulted in line with those reported in a MBR with a pre-denitrification scheme (Lubello et al. 2009). In contrast, in Period 2 the Yobs showed a significant decrease, reaching a pseudo steady-state value of 0.17 gVSS g−1CODremoved at the end of the experiments, highlighting a reduction of 55% compared to Period 1.


Water Research | 2016

Simultaneous nitritation–denitritation for the treatment of high-strength nitrogen in hypersaline wastewater by aerobic granular sludge

Santo Fabio Corsino; Marco Capodici; Claudia Morici; Michele Torregrossa; Gaspare Viviani


International Biodeterioration & Biodegradation | 2015

Cultivation of granular sludge with hypersaline oily wastewater

Santo Fabio Corsino; Riccardo Campo; Gaetano Di Bella; Michele Torregrossa; Gaspare Viviani

Collaboration


Dive into the Santo Fabio Corsino's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge