Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Gaspare Viviani is active.

Publication


Featured researches published by Gaspare Viviani.


Water Research | 2008

Uncertainty in urban stormwater quality modelling: The effect of acceptability threshold in the GLUE methodology

Gabriele Freni; Giorgio Mannina; Gaspare Viviani

Uncertainty analysis in integrated urban drainage modelling is of growing importance in the field of water quality. However, only few studies deal with uncertainty quantification in urban drainage modelling; furthermore, the few existing studies mainly focus on quantitative sewer flow modelling rather than uncertainty in water quality aspects. In this context, the generalised likelihood uncertainty estimation (GLUE) methodology was applied for the evaluation of the uncertainty of an integrated urban drainage model and some of its subjective hypotheses have been explored. More specifically, the influence of the subjective choice of the acceptability threshold has been detected in order to gain insights regarding its effect on the model results. The model has been applied to the Savena case study (Bologna, Italy) where water quality and quantity data were available. The model results show a strong influence of the acceptability threshold selection and confirm the importance of modellers experience in the application of GLUE uncertainty analysis.


Bioresource Technology | 2014

Comparison between moving bed-membrane bioreactor (MB-MBR) and membrane bioreactor (MBR) systems: Influence of wastewater salinity variation

D. Di Trapani; Gaetano Di Bella; Giorgio Mannina; Michele Torregrossa; Gaspare Viviani

Two pilot plant systems were investigated for the treatment of wastewater subject to a gradual increase of salinity. In particular, a membrane bioreactor (MBR) and a moving bed biofilm membrane bioreactor (MB-MBR) were analyzed. Carbon and ammonium removal, kinetic constants and membranes fouling rates have been assessed. Both plants showed very high efficiency in terms of carbon and ammonium removal and the gradual salinity increase led to a good acclimation of the biomass, as confirmed by the respirometric tests. Significant biofilm detachments from carriers were experienced, which contributed to increase the irreversible superficial cake deposition. However, this aspect prevented the pore fouling tendency in the membrane module of MB-MBR system. On the contrary, the MBR pilot, even showing a lower irreversible cake deposition, was characterized by a higher pore fouling tendency.


Environmental Modelling and Software | 2009

Identifiability analysis for receiving water body quality modelling

Gabriele Freni; Giorgio Mannina; Gaspare Viviani

In urban drainage, new computational possibilities have supported the development of new integrated approaches aimed at joint water quantity and quality analysis of the whole urban drainage system. Although the benefit of an integrated approach has been widely demonstrated, to date, several aspects prevent its applicability such as scarce availability of field data if compared with model complexity. These aspects sometimes prevent the correct estimation of parameters thus leading to large uncertainty in modelling response. This is a typical parameter identifiability problem that is discussed in the present paper evaluating the effect of identifiability procedures in increasing operator confidence in modelling results. The methodology presented has been applied to a home-made integrated urban drainage model that has been calibrated/validated considering field data collected in the Savena experimental catchment (Bologna, Italy). The results demonstrate the effectiveness of the identifiability analysis in obtaining a tool for urban integrated modelling applications and field data gathering campaigns.


Bioresource Technology | 2013

Performance of a MBR pilot plant treating high strength wastewater subject to salinity increase: Analysis of biomass activity and fouling behaviour

Gaetano Di Bella; D. Di Trapani; Michele Torregrossa; Gaspare Viviani

Membrane bioreactors produce high quality effluents that could be suitable for reuse. However, when treating high strength wastewater subject to a salinity increase, a modification of biomass characteristics may occur. This circumstance is of importance, since it can have a significant impact in terms of biokinetic as well as fouling behaviour. The aim of the study was to evaluate the performance of a pilot plant MBR, in terms of biomass activity and membrane fouling, fed with high strength synthetic wastewater, when subject to a salinity increase. With normal salinity, the pilot plant showed high removal efficiencies and high biomass respiratory activity. On the other hand, the salinity increase significantly affected the removal efficiency as well as the SMP production. Furthermore, the salinity increase showed a strong effect on biomass activity, reducing in particular the respiration rates of autotrophic populations.


Water Science and Technology | 2010

Comparison between hybrid moving bed biofilm reactor and activated sludge system: a pilot plant experiment.

D. Di Trapani; Giorgio Mannina; Michele Torregrossa; Gaspare Viviani

The paper presents the comparison between the traditional activated sludge system (AS) and a hybrid moving bed biofilm reactor (HMBBR). In particular, an experimental campaign has been carried out at the WWTP in Palermo (Italy), on a pilot plant consisting of two pre-anoxic schemes. The aerated tank of the HMBBR line was filled with suspended carriers (AnoxKaldnes K1), with a 30% filling ratio. The hydraulic load of the HMBBR line was increased up to two times the AS one. Further, in order to distinguish the additional contribution of the attached biomass for the HMBBR system, in the two lines the Mixed Liquor Suspended Solids (MLSS) was maintained as equal as possible. The monitoring period lasted three months during which several parameters were monitored. The obtained results showed a good treatment ability of the HMBBR system, referring to the organic matter removal as well as to the ammonium removal. In particular, in spite of the increase of the hydraulic load for the HMBBR line, the two systems showed a similar performance in terms of both organic and nitrogen removal. The results demonstrate the higher treatment capacity of the HMBBR addressing such system as an effective technology for the upgrading of overloaded wastewater treatment plants.


Water Research | 2011

Assessment of the integrated urban water quality model complexity through identifiability analysis

Gabriele Freni; Giorgio Mannina; Gaspare Viviani

Urban sources of water pollution have often been cited as the primary cause of poor water quality in receiving water bodies (RWB), and recently many studies have been conducted to investigate both continuous sources, such as wastewater-treatment plant (WWTP) effluents, and intermittent sources, such as combined sewer overflows (CSOs). An urban drainage system must be considered jointly, i.e., by means of an integrated approach. However, although the benefits of an integrated approach have been widely demonstrated, several aspects have prevented its wide application, such as the scarcity of field data for not only the input and output variables but also parameters that govern intermediate stages of the system, which are useful for robust calibration. These factors, along with the high complexity level of the currently adopted approaches, introduce uncertainties in the modelling process that are not always identifiable. In this study, the identifiability analysis was applied to a complex integrated catchment: the Nocella basin (Italy). This system is characterised by two main urban areas served by two WWTPs and has a small river as the RWB. The system was simulated by employing an integrated model developed in previous studies. The main goal of the study was to assess the right number of parameters that can be estimated on the basis of data-source availability. A preliminary sensitivity analysis was undertaken to reduce the model parameters to the most sensitive ones. Subsequently, the identifiability analysis was carried out by progressively considering new data sources and assessing the added value provided by each of them. In the process, several identifiability methods were compared and some new techniques were proposed for reducing subjectivity of the analysis. The study showed the potential of the identifiability analysis for selecting the most relevant parameters in the model, thus allowing for model simplification, and in assessing the impact of data sources for model reliability, thus guiding the analyst in the design of future monitoring campaigns. Further, the analysis showed some critical points in integrated urban drainage modelling, such as the interaction between water quality processes on the catchment and in the sewer, that can prevent the identifiability of some of the related parameters.


Water Science and Technology | 2010

Quantification of kinetic parameters for heterotrophic bacteria via respirometry in a hybrid reactor.

D. Di Trapani; Giorgio Mannina; Michele Torregrossa; Gaspare Viviani

Over the last decade new technologies are emerging even more for wastewater treatment. Among the new technologies, a recent possible solution regards Moving Bed Biofilm Reactors (MBBRs) that represent an effective alternative to conventional processes. More specifically such systems consist in the introduction of plastic elements inside the aerobic reactor as carrier material for the growth of attached biomass. Recently, one of the mostly used alternatives is to couple the Moving Bed Biofilm Reactor (MBBR) process with the conventional activated sludge process, and the resulting process is usually called HMBBR (Hybrid MBBR). In the MBBR process the biofilm grows attached on small plastic elements that are kept in constant motion throughout the entire volume of the reactor. Indeed, in such a system, a competition between the two biomasses, suspended and attached, can arise for the availability of the substrates, leading, as a consequence, to a modification in the biokinetic parameters of the two biomasses, compared to that of a pure suspended or attached biomass process. This paper presents the first results of a study aimed at estimating the kinetic heterotrophic constants in a HMBBR pilot plant using respirometric techniques. The pilot plant was built at the Acqua dei Corsari (Palermo) wastewater treatment plant and consisted of two parallel lines realized in a pre-anoxic scheme, in one of which the carrier material was added to the aerobic reactor with a filling ratio of 30%.


Environmental Modelling and Software | 2009

Assessment of data availability influence on integrated urban drainage modelling uncertainty

Gabriele Freni; Giorgio Mannina; Gaspare Viviani

In urban water quality management, several models are connected and integrated for analysing the fate of pollutants from the sources in the urban catchment to the final recipient; classical problems connected with the selection and calibration of parameters are amplified by the complexity of the modelling approach increasing their uncertainty. The present paper aims at studying the influence of reductions in available data on the modelling response uncertainty with respect to the different integrated modelling outputs (both considering quantity and quality variables). At this scope, a parsimonious integrated home-made model has been used allowing for analysing the combinative effect of data availability regarding the different parts of the integrated urban drainage system; the uncertainty analysis approach has been applied to an experimental catchment in Bologna (Italy). The number of available data points has been fictitiously reduced obtaining data sets ranging between 25% and 100% of the actually measured data. For each of the data sets, uncertainty has been evaluated and its propagation from the upstream sub-model to the downstream ones has been assessed. The present study demonstrates that model calibration and modelling efficiency assessment may induce the operator to be excessively confident in the model results when available data are scarce. Quite the opposite is indeed true, that limited data availability increases modelling uncertainty. A conclusion of this article is that uncertainty analysis should always be conducted in order to effectively evaluate model reliability.


Waste Management | 2011

Evaluation of methane emissions from Palermo municipal landfill: Comparison between field measurements and models.

Gaetano Di Bella; D. Di Trapani; Gaspare Viviani

Methane (CH(4)) diffuse emissions from Municipal Solid Waste (MSW) landfills represent one of the most important anthropogenic sources of greenhouse gas. CH(4) is produced by anaerobic biodegradation of organic matter in landfilled MSW and constitutes a major component of landfill gas (LFG). Gas recovery is a suitable method to effectively control CH(4) emissions from landfill sites and the quantification of CH(4) emissions represents a good tool to evaluate the effectiveness of a gas recovery system in reducing LFG emissions. In particular, LFG emissions can indirectly be evaluated from mass balance equations between LFG production, recovery and oxidation in the landfill, as well as by a direct approach based on LFG emission measurements from the landfill surface. However, up to now few direct measurements of landfill CH(4) diffuse emissions have been reported in the technical literature. In the present study, both modeling and direct emission measuring methodologies have been applied to the case study of Bellolampo landfill located in Palermo, Italy. The main aim of the present study was to evaluate CH(4) diffuse emissions, based on direct measurements carried out with the flux accumulation chamber (static, non-stationary) method, as well as to obtain the CH(4) contoured flux map of the landfill. Such emissions were compared with the estimate achieved by means of CH(4) mass balance equations. The results showed that the emissions obtained by applying the flux chamber method are in good agreement with the ones derived by the application of the mass balance equation, and that the evaluated contoured flux maps represent a reliable tool to locate areas with abnormal emissions in order to optimize the gas recovery system efficiency.


Bioresource Technology | 2011

The role of EPS concentration in MBR foaming: Analysis of a submerged pilot plant

Gaetano Di Bella; Michele Torregrossa; Gaspare Viviani

Foaming in Membrane BioReactor (MBR) is a frequently discussed topic. Some authors reported that the phenomenon is due to filamentous organisms, like at Conventional Activated Sludge (CAS) plants. However, in recent years, other authors reported that the Extra-cellular Polymer Substances (EPSs) concentration is an important factor for controlling foam as well. Nevertheless, even if a number of MBR plants are affected by foaming, presently there are no suitable methods to evaluate the phenomenon. To facilitate the study of this controversial phenomenon in an MBR system, certain foam tests proposed in the past for CASPs were investigated. The results of the tests were able to adequately measure quantity, stability and quality of the foam. In particular, the Scum Index increased proportionally with the EPS concentration and mixed liquor viscosity; Foam Power was mainly correlated with the protein concentration of in the EPS; Foam Rating was also correlated with the EPS concentration.

Collaboration


Dive into the Gaspare Viviani's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge