Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco Fondi is active.

Publication


Featured researches published by Marco Fondi.


BMC Systems Biology | 2010

The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis

Matteo Brilli; Marco Fondi; Renato Fani; Alessio Mengoni; Lorenzo Ferri; Marco Bazzicalupo; Emanuele G. Biondi

BackgroundIn the bacterium Caulobacter crescentus, CtrA coordinates DNA replication, cell division, and polar morphogenesis and is considered the cell cycle master regulator. CtrA activity varies during cell cycle progression and is modulated by phosphorylation, proteolysis and transcriptional control. In a phosphorylated state, CtrA binds specific DNA sequences, regulates the expression of genes involved in cell cycle progression and silences the origin of replication. Although the circuitry regulating CtrA is known in molecular detail in Caulobacter, its conservation and functionality in the other alpha-proteobacteria are still poorly understood.ResultsOrthologs of Caulobacter factors involved in the regulation of CtrA were systematically scanned in genomes of alpha-proteobacteria. In particular, orthologous genes of the divL-cckA-chpT-ctrA phosphorelay, the divJ-pleC-divK two-component system, the cpdR-rcdA-clpPX proteolysis system, the methyltransferase ccrM and transcriptional regulators dnaA and gcrA were identified in representative genomes of alpha-proteobacteria. CtrA, DnaA and GcrA binding sites and CcrM putative methylation sites were predicted in promoter regions of all these factors and functions controlled by CtrA in all alphas were predicted.ConclusionsThe regulatory cell cycle architecture was identified in all representative alpha-proteobacteria, revealing a high diversification of circuits but also a conservation of logical features. An evolutionary model was proposed where ancient alphas already possessed all modules found in Caulobacter arranged in a variety of connections. Two schemes appeared to evolve: a complex circuit in Caulobacterales and Rhizobiales and a simpler one found in Rhodobacterales.


Biology Direct | 2009

A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land.

Giovanni Emiliani; Marco Fondi; Renato Fani; Simonetta Gribaldo

BackgroundThe pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified.ResultsWe have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments.ConclusionOur results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV.ReviewersThis article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.


PLOS ONE | 2011

Deciphering the role of RND efflux transporters in Burkholderia cenocepacia

Silvia Bazzini; Claudia Udine; Andrea Sass; Maria Rosalia Pasca; Francesca Longo; Giovanni Emiliani; Marco Fondi; Elena Perrin; Francesca Decorosi; Carlo Viti; Luciana Giovannetti; Livia Leoni; Renato Fani; Giovanna Riccardi; Eshwar Mahenthiralingam; Silvia Buroni

Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF) pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division) efflux pumps are known to be among the mediators of multidrug resistance in Gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16) has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9), and a double-mutant in both efflux pumps (named D4-D9), were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4–D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.


Physics of Life Reviews | 2009

Origin and evolution of metabolic pathways

Renato Fani; Marco Fondi

The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution. In fact, the exhaustion of the prebiotic supply of amino acids and other compounds that were likely present in the ancestral environment, imposed an important selective pressure, favoring those primordial heterotrophic cells which became capable of synthesizing those molecules. Thus, the emergence of metabolic pathways allowed primitive organisms to become increasingly less-dependent on exogenous sources of organic compounds. Comparative analyses of genes and genomes from organisms belonging to Archaea, Bacteria and Eukarya revealed that, during evolution, different forces and molecular mechanisms might have driven the shaping of genomes and the arisal of new metabolic abilities. Among these gene elongations, gene and operon duplications undoubtedly played a major role since they can lead to the (immediate) appearance of new genetic material that, in turn, might undergo evolutionary divergence giving rise to new genes coding for new metabolic abilities. Gene duplication has been invoked in the different schemes proposed to explain why and how the extant metabolic pathways have arisen and shaped. Both the analysis of completely sequenced genomes and directed evolution experiments strongly support one of them, i.e. the patchwork hypothesis, according to which metabolic pathways have been assembled through the recruitment of primitive enzymes that could react with a wide range of chemically related substrates. However, the analysis of the structure and organization of genes belonging to ancient metabolic pathways, such as histidine biosynthesis and nitrogen fixation, suggested that other different hypothesis, i.e. the retrograde hypothesis or the semi-enzymatic theory, may account for the arisal of some metabolic routes.


Bioinformatics | 2015

MeDuSa: a multi-draft based scaffolder

Emanuele Bosi; Beatrice Donati; Marco Galardini; Sara Brunetti; Marie-France Sagot; Pietro Liò; Pierluigi Crescenzi; Renato Fani; Marco Fondi

MOTIVATION Completing the genome sequence of an organism is an important task in comparative, functional and structural genomics. However, this remains a challenging issue from both a computational and an experimental viewpoint. Genome scaffolding (i.e. the process of ordering and orientating contigs) of de novo assemblies usually represents the first step in most genome finishing pipelines. RESULTS In this article we present MeDuSa (Multi-Draft based Scaffolder), an algorithm for genome scaffolding. MeDuSa exploits information obtained from a set of (draft or closed) genomes from related organisms to determine the correct order and orientation of the contigs. MeDuSa formalizes the scaffolding problem by means of a combinatorial optimization formulation on graphs and implements an efficient constant factor approximation algorithm to solve it. In contrast to currently used scaffolders, it does not require either prior knowledge on the microrganisms dataset under analysis (e.g. their phylogenetic relationships) or the availability of paired end read libraries. This makes usability and running time two additional important features of our method. Moreover, benchmarks and tests on real bacterial datasets showed that MeDuSa is highly accurate and, in most cases, outperforms traditional scaffolders. The possibility to use MeDuSa on eukaryotic datasets has also been evaluated, leading to interesting results.


Biotechnology Advances | 2012

Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria.

Maria Cristiana Papaleo; Marco Fondi; Isabel Maida; Elena Perrin; Angelina Lo Giudice; Luigi Michaud; Santina Mangano; Gianluca Bartolucci; Riccardo Romoli; Renato Fani

The aerobic heterotrophic bacterial communities isolated from three different Antarctic sponge species were analyzed for their ability to produce antimicrobial compounds active toward Cystic Fibrosis opportunistic pathogens belonging to the Burkholderia cepacia complex (Bcc). The phylogenetic analysis performed on the 16S rRNA genes affiliated the 140 bacterial strains analyzed to 15 genera. Just three of them (Psychrobacter, Pseudoalteromonas and Arthrobacter) were shared by the three sponges. The further Random Amplified Polymorphic DNA analysis allowed to demonstrate that microbial communities are highly sponge-specific and a very low degree of genus/species/strain sharing was detected. Data obtained revealed that most of these sponge-associated Antarctic bacteria and belonging to different genera were able to completely inhibit the growth of bacteria belonging to the Bcc. On the other hand, the same Antarctic strains did not have any effect on the growth of other pathogenic bacteria, strongly suggesting that the inhibition is specific for Bcc bacteria. Moreover, the antimicrobial compounds synthesized by the most active Antarctic bacteria are very likely Volatile Organic Compounds (VOCs), a finding that was confirmed by the SPME-GC-MS technique, which revealed the production of a large set of VOCs by a representative set of Antarctic bacteria. The synthesis of these VOCs appeared to be related neither to the presence of pks genes nor the presence of plasmid molecules. The whole body of data obtained in this work indicates that sponge-associated bacteria represent an untapped source for the identification of new antimicrobial compounds and are paving the way for the discovery of new drugs that can be efficiently and successfully used for the treatment of CF infections.


BMC Evolutionary Biology | 2010

Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome

Marco Fondi; Giovanni Bacci; Matteo Brilli; Maria Cristiana Papaleo; Alessio Mengoni; Mario Vaneechoutte; Lenie Dijkshoorn; Renato Fani

BackgroundProkaryotic plasmids have a dual importance in the microbial world: first they have a great impact on the metabolic functions of the host cell, providing additional traits that can be accumulated in the cell without altering the gene content of the bacterial chromosome. Additionally and/or alternatively, from a genome perspective, plasmids can provide a basis for genomic rearrangements via homologous recombination and so they can facilitate the loss or acquisition of genes during these events, which eventually may lead to horizontal gene transfer (HGT). Given their importance for conferring adaptive traits to the host organisms, the interest in plasmid sequencing is growing and now many complete plasmid sequences are available online.ResultsBy using the newly developed Blast2Network bioinformatic tool, a comparative analysis was performed on the plasmid and chromosome sequence data available for bacteria belonging to the genus Acinetobacter, an ubiquitous and clinically important group of γ-proteobacteria. Data obtained showed that, although most of the plasmids lack mobilization and transfer functions, they have probably a long history of rearrangements with other plasmids and with chromosomes. Indeed, traces of transfers between different species can be disclosed.ConclusionsWe show that, by combining plasmid and chromosome similarity, identity based, network analysis, an evolutionary scenario can be described even for highly mobile genetic elements that lack extensively shared genes. In particular we found that transposases and selective pressure for mercury resistance seem to have played a pivotal role in plasmid evolution in Acinetobacter genomes sequenced so far.


Molecular Biology and Evolution | 2012

Large-Scale Analysis of Plasmid Relationships through Gene-Sharing Networks

Manu Tamminen; Marko Virta; Renato Fani; Marco Fondi

Plasmids are vessels of genetic exchange in microbial communities. They are known to transfer between different host organisms and acquire diverse genetic elements from chromosomes and/or other plasmids. Therefore, they constitute an important element in microbial evolution by rapidly disseminating various genetic properties among different communities. A paradigmatic example of this is the dissemination of antibiotic resistance (AR) genes that has resulted in the emergence of multiresistant pathogenic bacterial strains. To globally analyze the evolutionary dynamics of plasmids, we built a large graph in which 2,343 plasmids (nodes) are connected according to the proteins shared by each other. The analysis of this gene-sharing network revealed an overall coherence between network clustering and the phylogenetic classes of the corresponding microorganisms, likely resulting from genetic barriers to horizontal gene transfer between distant phylogenetic groups. Habitat was not a crucial factor in clustering as plasmids from organisms inhabiting different environments were often found embedded in the same cluster. Analyses of network metrics revealed a statistically significant correlation between plasmid mobility and their centrality within the network, providing support to the observation that mobile plasmids are particularly important in spreading genes in microbial communities. Finally, our study reveals an extensive (and previously undescribed) sharing of AR genes between Actinobacteria and Gammaproteobacteria, suggesting that the former might represent an important reservoir of AR genes for the latter.


Microbiological Research | 2015

Multi -omics and metabolic modelling pipelines: challenges and tools for systems microbiology.

Marco Fondi; Pietro Liò

Integrated -omics approaches are quickly spreading across microbiology research labs, leading to (i) the possibility of detecting previously hidden features of microbial cells like multi-scale spatial organization and (ii) tracing molecular components across multiple cellular functional states. This promises to reduce the knowledge gap between genotype and phenotype and poses new challenges for computational microbiologists. We underline how the capability to unravel the complexity of microbial life will strongly depend on the integration of the huge and diverse amount of information that can be derived today from -omics experiments. In this work, we present opportunities and challenges of multi -omics data integration in current systems biology pipelines. We here discuss which layers of biological information are important for biotechnological and clinical purposes, with a special focus on bacterial metabolism and modelling procedures. A general review of the most recent computational tools for performing large-scale datasets integration is also presented, together with a possible framework to guide the design of systems biology experiments by microbiologists.


Research in Microbiology | 2009

Origin and evolution of operons and metabolic pathways

Marco Fondi; Giovanni Emiliani; Renato Fani

The emergence and evolution of metabolic pathways represented a crucial step in molecular and cellular evolution, allowing primitive organisms to become less dependent on exogenous sources of organic compounds. This work will review the main theories accounting for their assembly and for the origin and evolution of prokaryotic operons.

Collaboration


Dive into the Marco Fondi's collaboration.

Top Co-Authors

Avatar

Renato Fani

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Luisa Tutino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge