Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Cristiana Papaleo is active.

Publication


Featured researches published by Maria Cristiana Papaleo.


Biotechnology Advances | 2012

Sponge-associated microbial Antarctic communities exhibiting antimicrobial activity against Burkholderia cepacia complex bacteria.

Maria Cristiana Papaleo; Marco Fondi; Isabel Maida; Elena Perrin; Angelina Lo Giudice; Luigi Michaud; Santina Mangano; Gianluca Bartolucci; Riccardo Romoli; Renato Fani

The aerobic heterotrophic bacterial communities isolated from three different Antarctic sponge species were analyzed for their ability to produce antimicrobial compounds active toward Cystic Fibrosis opportunistic pathogens belonging to the Burkholderia cepacia complex (Bcc). The phylogenetic analysis performed on the 16S rRNA genes affiliated the 140 bacterial strains analyzed to 15 genera. Just three of them (Psychrobacter, Pseudoalteromonas and Arthrobacter) were shared by the three sponges. The further Random Amplified Polymorphic DNA analysis allowed to demonstrate that microbial communities are highly sponge-specific and a very low degree of genus/species/strain sharing was detected. Data obtained revealed that most of these sponge-associated Antarctic bacteria and belonging to different genera were able to completely inhibit the growth of bacteria belonging to the Bcc. On the other hand, the same Antarctic strains did not have any effect on the growth of other pathogenic bacteria, strongly suggesting that the inhibition is specific for Bcc bacteria. Moreover, the antimicrobial compounds synthesized by the most active Antarctic bacteria are very likely Volatile Organic Compounds (VOCs), a finding that was confirmed by the SPME-GC-MS technique, which revealed the production of a large set of VOCs by a representative set of Antarctic bacteria. The synthesis of these VOCs appeared to be related neither to the presence of pks genes nor the presence of plasmid molecules. The whole body of data obtained in this work indicates that sponge-associated bacteria represent an untapped source for the identification of new antimicrobial compounds and are paving the way for the discovery of new drugs that can be efficiently and successfully used for the treatment of CF infections.


BMC Evolutionary Biology | 2010

Exploring the evolutionary dynamics of plasmids: the Acinetobacter pan-plasmidome

Marco Fondi; Giovanni Bacci; Matteo Brilli; Maria Cristiana Papaleo; Alessio Mengoni; Mario Vaneechoutte; Lenie Dijkshoorn; Renato Fani

BackgroundProkaryotic plasmids have a dual importance in the microbial world: first they have a great impact on the metabolic functions of the host cell, providing additional traits that can be accumulated in the cell without altering the gene content of the bacterial chromosome. Additionally and/or alternatively, from a genome perspective, plasmids can provide a basis for genomic rearrangements via homologous recombination and so they can facilitate the loss or acquisition of genes during these events, which eventually may lead to horizontal gene transfer (HGT). Given their importance for conferring adaptive traits to the host organisms, the interest in plasmid sequencing is growing and now many complete plasmid sequences are available online.ResultsBy using the newly developed Blast2Network bioinformatic tool, a comparative analysis was performed on the plasmid and chromosome sequence data available for bacteria belonging to the genus Acinetobacter, an ubiquitous and clinically important group of γ-proteobacteria. Data obtained showed that, although most of the plasmids lack mobilization and transfer functions, they have probably a long history of rearrangements with other plasmids and with chromosomes. Indeed, traces of transfers between different species can be disclosed.ConclusionsWe show that, by combining plasmid and chromosome similarity, identity based, network analysis, an evolutionary scenario can be described even for highly mobile genetic elements that lack extensively shared genes. In particular we found that transposases and selective pressure for mercury resistance seem to have played a pivotal role in plasmid evolution in Acinetobacter genomes sequenced so far.


Research in Microbiology | 2012

Molecular and phenotypic characterization of Acinetobacter strains able to degrade diesel fuel

Kostlend Mara; Francesca Decorosi; Carlo Viti; Luciana Giovannetti; Maria Cristiana Papaleo; Isabel Maida; Elena Perrin; Marco Fondi; Mario Vaneechoutte; Alexandr Nemec; Maria van den Barselaar; Lenie Dijkshoorn; Renato Fani

Characterization of bacterial communities in oil-contaminated soils and evaluation of their degradation capacities may serve as a guide for improving remediation of such environments. Using physiological and molecular methods, the aim of this work was to characterize 17 Acinetobacter strains (13 species) able to use diesel fuel oil as sole carbon and energy source. The strains were first tested for their ability to grow on different alkanes on minimal medium containing high NaCl concentrations. The envelope hydrophobicity of each strain was assessed by microbial adhesion to the hydrocarbon test (MATH) when grown in LB medium or minimal medium containing succinate or diesel fuel. Most strains were hydrophobic both in LB and minimal medium, except for strain Acinetobacter venetianus VE-C3 that was hydrophobic only in minimal medium. Furthermore, two A. venetianus strains, RAG-1(T) and LUH 7437, and strain ATCC 17905 (genomic species 13BJ) displayed biosurfactant activity. The alkM gene encoding alkane hydroxylase was detected in the chromosome of the 15 strains by PCR amplification, sequencing and Southern blot analysis. Phenotype microarray analysis performed on the five A. venetianus strains revealed that they differentially used purines as N-source and confirmed that they are unable to use carbohydrates.


Journal of Mass Spectrometry | 2011

Characterization of the volatile profile of Antarctic bacteria by using solid‐phase microextraction‐gas chromatography‐mass spectrometry

Riccardo Romoli; Maria Cristiana Papaleo; Donatella de Pascale; Maria Luisa Tutino; Luigi Michaud; Angelina LoGiudice; Renato Fani; Gianluca Bartolucci

Bacteria belonging to the Burkholderia cepacia complex (Bcc) are significant pathogens in Cystic Fibrosis (CF) patients and are resistant to a plethora of antibiotics. In this context, microorganisms from Antarctica are interesting because they produce antimicrobial compounds inhibiting the growth of other bacteria. This is particularly true for bacteria isolated from Antarctic sponges. The aim of this work was to characterize a set of Antarctic bacteria for their ability to produce new natural drugs that could be exploited in the control of infections in CF patients by Bcc bacteria. Hence, 11 bacterial strains allocated to different genera (e.g., Pseudoalteromonas, Arthrobacter and Psychrobacter) were tested for their ability to inhibit the growth of 21 Bcc strains and some other human pathogens. All these bacteria completely inhibited the growth of most, if not all, Bcc strains, suggesting a highly specific activity toward Bcc strains. Experimental evidences showed that the antimicrobial compounds are small volatile organic compounds, and are constitutively produced via an unknown pathway. The microbial volatile profile was obtained by SPME-GC-MS within the m/z interval of 40-450. Solid phase micro extraction technique affords the possibility to extract the volatile compounds in head space with a minimal sample perturbation. Principal component analysis and successive cluster discriminant analysis was applied to evaluate the relationships among the volatile organic compounds with the aim of classifying the microorganisms by their volatile profile. These data highlight the potentiality of Antarctic bacteria as novel sources of antibacterial substances to face Bcc infections in CF patients.


PLOS ONE | 2014

Soil bacterial community response to differences in agricultural management along with seasonal changes in a Mediterranean region

Annamaria Bevivino; Patrizia Paganin; Giovanni Bacci; Alessandro Florio; Maite Sampedro Pellicer; Maria Cristiana Papaleo; Alessio Mengoni; Luigi Ledda; Renato Fani; Anna Benedetti; Claudia Dalmastri

Land-use change is considered likely to be one of main drivers of biodiversity changes in grassland ecosystems. To gain insight into the impact of land use on the underlying soil bacterial communities, we aimed at determining the effects of agricultural management, along with seasonal variations, on soil bacterial community in a Mediterranean ecosystem where different land-use and plant cover types led to the creation of a soil and vegetation gradient. A set of soils subjected to different anthropogenic impact in a typical Mediterranean landscape, dominated by Quercus suber L., was examined in spring and autumn: a natural cork-oak forest, a pasture, a managed meadow, and two vineyards (ploughed and grass covered). Land uses affected the chemical and structural composition of the most stabilised fractions of soil organic matter and reduced soil C stocks and labile organic matter at both sampling season. A significant effect of land uses on bacterial community structure as well as an interaction effect between land uses and season was revealed by the EP index. Cluster analysis of culture-dependent DGGE patterns showed a different seasonal distribution of soil bacterial populations with subgroups associated to different land uses, in agreement with culture-independent T-RFLP results. Soils subjected to low human inputs (cork-oak forest and pasture) showed a more stable bacterial community than those with high human input (vineyards and managed meadow). Phylogenetic analysis revealed the predominance of Proteobacteria, Actinobacteria, Bacteroidetes, and Firmicutes phyla with differences in class composition across the site, suggesting that the microbial composition changes in response to land uses. Taken altogether, our data suggest that soil bacterial communities were seasonally distinct and exhibited compositional shifts that tracked with changes in land use and soil management. These findings may contribute to future searches for bacterial bio-indicators of soil health and sustainable productivity.


BMC Evolutionary Biology | 2010

Exploring the HME and HAE1 efflux systems in the genus Burkholderia

Elena Perrin; Marco Fondi; Maria Cristiana Papaleo; Isabel Maida; Silvia Buroni; Maria Rosalia Pasca; Giovanna Riccardi; Renato Fani

BackgroundThe genus Burkholderia includes a variety of species with opportunistic human pathogenic strains, whose increasing global resistance to antibiotics has become a public health problem. In this context a major role could be played by multidrug efflux pumps belonging to Resistance Nodulation Cell-Division (RND) family, which allow bacterial cells to extrude a wide range of different substrates, including antibiotics. This study aims to i) identify rnd genes in the 21 available completely sequenced Burkholderia genomes, ii) analyze their phylogenetic distribution, iii) define the putative function(s) that RND proteins perform within the Burkholderia genus and iv) try tracing the evolutionary history of some of these genes in Burkholderia.ResultsBLAST analysis of the 21 Burkholderia sequenced genomes, using experimentally characterized ceoB sequence (one of the RND family counterpart in the genus Burkholderia) as probe, allowed the assembly of a dataset comprising 254 putative RND proteins. An extensive phylogenetic analysis revealed the occurrence of several independent events of gene loss and duplication across the different lineages of the genus Burkholderia, leading to notable differences in the number of paralogs between different genomes. A putative substrate [antibiotics (HAE1 proteins)/heavy-metal (HME proteins)] was also assigned to the majority of these proteins. No correlation was found between the ecological niche and the lifestyle of Burkholderia strains and the number/type of efflux pumps they possessed, while a relation can be found with genome size and taxonomy. Remarkably, we observed that only HAE1 proteins are mainly responsible for the different number of proteins observed in strains of the same species. Data concerning both the distribution and the phylogenetic analysis of the HAE1 and HME in the Burkholderia genus allowed depicting a likely evolutionary model accounting for the evolution and spreading of HME and HAE1 systems in the Burkholderia genus.ConclusionA complete knowledge of the presence and distribution of RND proteins in Burkholderia species was obtained and an evolutionary model was depicted. Data presented in this work may serve as a basis for future experimental tests, focused especially on HAE1 proteins, aimed at the identification of novel targets in antimicrobial therapy against Burkholderia species.


Metabolomics | 2014

GC–MS volatolomic approach to study the antimicrobial activity of the antarctic bacterium Pseudoalteromonas sp. TB41

Riccardo Romoli; Maria Cristiana Papaleo; D. de Pascale; Maria Luisa Tutino; Luigi Michaud; A. LoGiudice; Renato Fani; Gianluca Bartolucci

Many bacteria produce a wide range of volatile info-chemicals compounds (mVOCs) that constitute an important regulatory factor in the interrelationships among different organisms in microbial ecosystems. It has been shown that Antarctic bacteria isolated from three different sponge species, by producing mVOCs, are able to inhibit specifically the growth of Burkholderia cepacia complex (Bcc) strains (i.e. opportunistic pathogens of cystic fibrosis patients) as demonstrated by cross-streaking inhibition assays. This study reports a metabolomics approach to investigate the volatile profile of both the Antarctic sponge-associated Pseudoalteromonas sp. TB41 (P-sp-TB41) and Burkholderia cenocepacia strain LMG16654 (Bc-LMG16654) under aerobic conditions. Solid phase micro extraction (SPME) in head space of biological samples allowed an in vivo sampling of mVOCs with minimal specimen disturbance. The SPME fiber was termically desorbed in the injection port of gas chromatography–mass spectrometer (GC–MS) system setted in EI scan mode. The raw data were processed using both an automated mass spectra deconvolution and identification system and a metabolomic approach, which allowed a selection of 30 compounds presumably responsible for the inhibition of Bc-LMG16654 growth. The results obtained from samples prepared under cross-streaking conditions also suggest that the presence of Bc-LMG16654 cells neither interferes with the production of mVOCs nor induces the synthesis of different mVOCs. The employing of mass spectrometry played a key role in tuning the experimental system and in the evaluation of results. The use of this approach to study the interaction, in aerobic condition, among other Antarctic bacteria and Bcc and the possibility to extend this approach to other pathogen-antagonist relationship, is currently in progress.


Journal of Medical Microbiology | 2010

Identification of species of the Burkholderia cepacia complex by sequence analysis of the hisA gene.

Maria Cristiana Papaleo; Elena Perrin; Isabel Maida; Marco Fondi; Renato Fani; Peter Vandamme

Bacteria of the Burkholderia cepacia complex (Bcc) are opportunistic human pathogens that can cause serious infections in the lungs of cystic fibrosis patients. The Bcc is a complex taxonomic group and comprises 17 closely related species of both biotechnological and clinical importance that have been discriminated by a polyphasic taxonomic approach. In this study we focused on the hisA gene, which encodes a 1-(5-phosphoribosyl)-5-[(5-phosphoribosylamino) methylideneamino] imidazole-4-carboxamide isomerase involved in histidine biosynthesis, as a new target gene to discriminate among the Bcc species. PCR primers were designed to amplify a hisA DNA fragment of 442 bp from 78 strains representative of all the 17 Bcc species known at the time of writing. The nucleotide sequences of the amplicons were determined and aligned with the 54 Bcc sequences available in databases. Then a phylogenetic tree was constructed on the basis of this alignment and this revealed that this hisA region allows discrimination of all Bcc species, suggesting that this gene fragment can be used for the identification of Bcc strains. In addition, an 11 nucleotide letter code for the rapid discrimination of Bcc species was identified.


Microbiological Research | 2014

Genomic analysis of three sponge-associated Arthrobacter Antarctic strains, inhibiting the growth of Burkholderia cepacia complex bacteria by synthesizing volatile organic compounds.

Valerio Orlandini; Isabel Maida; Marco Fondi; Elena Perrin; Maria Cristiana Papaleo; Emanuele Bosi; Donatella de Pascale; Maria Luisa Tutino; Luigi Michaud; Angelina Lo Giudice; Renato Fani

In this work we analyzed the ability of three Arthrobacter strains (namely TB23, TB26 and CAL618), which were isolated from the Antarctic sponges Haliclonissa verrucosa and Lyssodendrix nobilis, to specifically inhibit the growth of a panel of 40 Burkholderia cepacia complex strains, representing a major cause of infections in patients that are affected by Cystic Fibrosis. The inhibitory activity was due to the synthesis of antimicrobial compounds, very likely volatile organic compounds (VOCs), and was partially dependent on the growth media that were used for Antarctic strains growth. The phylogenetic analysis revealed that two of them (i.e. CAL 618 and TB23) were very close and very likely belonged to the same Arthrobacter species, whereas the strain TB26 was placed in a distant branch. The genome of the strains TB26 and CAL618 was also sequenced and compared with that of the strain TB23. The analysis revealed that TB23 and CAL618 shared more genomic properties (GC content, genome size, number of genes) than with TB26. Since the three strains exhibited very similar inhibition pattern vs Bcc strains, it is quite possible that genes involved in the biosynthesis of antimicrobial compounds very likely belong to the core genome.


Research in Microbiology | 2013

The genome sequence of the hydrocarbon-degrading Acinetobacter venetianus VE-C3

Marco Fondi; Ermanno Rizzi; Giovanni Emiliani; Valerio Orlandini; Luisa Berná; Maria Cristiana Papaleo; Elena Perrin; Isabel Maida; Giorgio Corti; Gianluca De Bellis; Franco Baldi; Lenie Dijkshoorn; Mario Vaneechoutte; Renato Fani

Here we report the genome sequence of Acinetobacter venetianus VE-C3, a strain isolated from the Venice Lagoon and known to be able to degrade n-alkanes. Post sequencing analyses revealed that this strain is relatively distantly related to the other Acinetobacter strains completely sequenced so far as shown by phylogenetic analysis and pangenome analysis (1285 genes shared with all the other Acinetobacter genomes sequenced so far). A. venetianus VE-C3 possesses a wide range of determinants whose molecular functions are probably related to the survival in a strongly impacted ecological niche. Among them, genes probably involved in the metabolism of long-chain n-alkanes and in the resistance to toxic metals (e.g. arsenic, cadmium, cobalt and zinc) were found. Genes belonging to these processes were found both on the chromosome and on plasmids. Also, our analysis documented one of the possible genetic bases underlying the strategy adopted by A. venetianus VE-C3 for the adhesion to oil fuel droplets, which could account for the differences existing in this process with other A. venetianus strains. Finally, the presence of a number of DNA mobilization-related genes (i.e. transposases, integrases, resolvases) strongly suggests an important role played by horizontal gene transfer in shaping the genome of A. venetianus VE-C3 and in its adaptation to its special ecological niche.

Collaboration


Dive into the Maria Cristiana Papaleo's collaboration.

Top Co-Authors

Avatar

Renato Fani

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Marco Fondi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Maria Luisa Tutino

University of Naples Federico II

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge