Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renato Fani is active.

Publication


Featured researches published by Renato Fani.


Applied and Environmental Microbiology | 2000

Frequency and biodiversity of 2,4-diacetylphloroglucinol-producing bacteria isolated from the maize rhizosphere at different stages of plant growth.

C. Picard; F. Di Cello; M. Ventura; Renato Fani; A. Guckert

ABSTRACT A Pseudomonas 2,4-diacetylphloroglucinol (DAPG)-producing population that occurred naturally on the roots, in rhizosphere soil of Zea mays and in the nonrhizosphere soil was investigated in order to assess the microbial diversity at five stages of plant growth. A total of 1,716 isolates were obtained, and 188 of these isolates were able to produce DAPG. DAPG producers were isolated at each stage of plant growth, indicating that the maize rhizosphere is colonized by natural DAPG producers throughout development. The frequency of DAPG producers was very low in the first stage of plant growth and increased over time. An analysis of the level of biodiversity of the DAPG producers at the species level was performed by comparing the AluI restriction patterns of the 16S ribosomal DNAs (rDNAs) amplified by PCR from 167 isolates. This comparison allowed us to cluster the isolates into four amplified rDNA restriction analysis (ARDRA) groups, and the main group (ARDRA group 1) contained 89.8% of the isolates. The diversity of the 150 isolates belonging to ARDRA group 1 was analyzed by the random amplified polymorphic DNA (RAPD) technique. An analysis of RAPD patterns by a molecular variance method revealed that there was a high level of genetic diversity in this population and that the genetic diversity was related to plant age. Finally, we found that some of the DAPG producers, which originated from all stages of plant growth, had the same genotype. These DAPG producers could be exploited in future screening programs for biocontrol agents.


Proceedings of the Royal Society of London. Series B, Biological Sciences (United Kingdom) | 1994

Flavobacteria as intracellular symbionts in cockroaches

Claudio Bandi; Giuseppe Damiani; Lorenzo Magrassi; Aldo Grigolo; Renato Fani; Luciano Sacchi

Animal cells are the sole habitat for a variety of bacteria. Molecular sequence data have been used to position a number of these intracellular microorganisms in the overall scheme of eubacterial evolution. Most of them have been classified as proteobacteria or chlamydiae. Here we present molecular evidence placing an intracellular symbiont among the flavobacteria-bacteroides. This microorganism inhabits specialized cells in the cockroach fat body and has been described as a mutualistic endosymbiont of uncertain phylogenetic position. The small subunit ribosomal DNA of these bacteria was analysed after polymerase chain reaction amplification to investigate their phylogeny. The endosymbionts of five species of cockroaches were found to make up a coherent group with no close relatives within the eubacterial phylum defined by the flavobacteria. In addition, the relationships among the endosymbionts, as revealed by DNA sequence data, appeared to be congruent with the host taxonomic relationships. Based on the host fossil record, a tentative calibration of the nucleotide substitution rate for the cockroach flavobacteria gave results congruent with those obtained for the aphid endosymbiotic proteobacteria.


Journal of Molecular Evolution | 2000

Molecular evolution of nitrogen fixation: the evolutionary history of the nifD, nifK, nifE, and nifN genes.

Renato Fani; Romina Gallo; Pietro Liò

Abstract. The pairs of nitrogen fixation genes nifDK and nifEN encode for the α and β subunits of nitrogenase and for the two subunits of the NifNE protein complex, involved in the biosynthesis of the FeMo cofactor, respectively. Comparative analysis of the amino acid sequences of the four NifD, NifK, NifE, and NifN in several archaeal and bacterial diazotrophs showed extensive sequence similarity between them, suggesting that their encoding genes constitute a novel paralogous gene family. We propose a two-step model to reconstruct the possible evolutionary history of the four genes. Accordingly, an ancestor gene gave rise, by an in-tandem paralogous duplication event followed by divergence, to an ancestral bicistronic operon; the latter, in turn, underwent a paralogous operon duplication event followed by evolutionary divergence leading to the ancestors of the present-day nifDK and nifEN operons. Both these paralogous duplication events very likely predated the appearance of the last universal common ancestor. The possible role of the ancestral gene and operon in nitrogen fixation is also discussed.


BMC Systems Biology | 2010

The diversity and evolution of cell cycle regulation in alpha-proteobacteria: a comparative genomic analysis

Matteo Brilli; Marco Fondi; Renato Fani; Alessio Mengoni; Lorenzo Ferri; Marco Bazzicalupo; Emanuele G. Biondi

BackgroundIn the bacterium Caulobacter crescentus, CtrA coordinates DNA replication, cell division, and polar morphogenesis and is considered the cell cycle master regulator. CtrA activity varies during cell cycle progression and is modulated by phosphorylation, proteolysis and transcriptional control. In a phosphorylated state, CtrA binds specific DNA sequences, regulates the expression of genes involved in cell cycle progression and silences the origin of replication. Although the circuitry regulating CtrA is known in molecular detail in Caulobacter, its conservation and functionality in the other alpha-proteobacteria are still poorly understood.ResultsOrthologs of Caulobacter factors involved in the regulation of CtrA were systematically scanned in genomes of alpha-proteobacteria. In particular, orthologous genes of the divL-cckA-chpT-ctrA phosphorelay, the divJ-pleC-divK two-component system, the cpdR-rcdA-clpPX proteolysis system, the methyltransferase ccrM and transcriptional regulators dnaA and gcrA were identified in representative genomes of alpha-proteobacteria. CtrA, DnaA and GcrA binding sites and CcrM putative methylation sites were predicted in promoter regions of all these factors and functions controlled by CtrA in all alphas were predicted.ConclusionsThe regulatory cell cycle architecture was identified in all representative alpha-proteobacteria, revealing a high diversification of circuits but also a conservation of logical features. An evolutionary model was proposed where ancient alphas already possessed all modules found in Caulobacter arranged in a variety of connections. Two schemes appeared to evolve: a complex circuit in Caulobacterales and Rhizobiales and a simpler one found in Rhodobacterales.


Applied and Environmental Microbiology | 2001

Nitrogen fixation genes in an endosymbiotic Burkholderia strain

Daniela Minerdi; Renato Fani; Romina Gallo; Alessandra Boarino; Paola Bonfante

ABSTRACT In this paper we report the identification and characterization of a DNA region containing putative nif genes and belonging to a Burkholderia endosymbiont of the arbuscular mycorrhizal fungus Gigaspora margarita. A genomic library of total DNA extracted from the fungal spores was also representative of the bacterial genome and was used to investigate the prokaryotic genome. Screening of the library with Azospirillum brasilense nifHDKgenes as the prokaryotic probes led to the identification of a 6,413-bp region. Analysis revealed three open reading frames encoding putative proteins with a very high degree of sequence similarity with the two subunits (NifD and NifK) of the component I and with component II (NifH) of nitrogenase from different diazotrophs. The three genes were arranged in an operon similar to that shown by most archaeal and bacterial diazotrophs. PCR experiments with primers designed on theBurkholderia nifHDK genes and Southern blot analysis demonstrate that they actually belong to the genome of the G. margarita endosymbiont. They offer, therefore, the first sequence for the nif operon described for Burkholderia. Reverse transcriptase PCR experiments with primers designed on theBurkholderia nifH and nifD genes and performed on total RNA extracted from spores demonstrate that the gene expression was limited to the germination phase. A phylogenetic analysis performed on the available nifK sequences placed the endosymbioticBurkholderia close to A. brasilense.


Biology Direct | 2009

A horizontal gene transfer at the origin of phenylpropanoid metabolism: a key adaptation of plants to land.

Giovanni Emiliani; Marco Fondi; Renato Fani; Simonetta Gribaldo

BackgroundThe pioneering ancestor of land plants that conquered terrestrial habitats around 500 million years ago had to face dramatic stresses including UV radiation, desiccation, and microbial attack. This drove a number of adaptations, among which the emergence of the phenylpropanoid pathway was crucial, leading to essential compounds such as flavonoids and lignin. However, the origin of this specific land plant secondary metabolism has not been clarified.ResultsWe have performed an extensive analysis of the taxonomic distribution and phylogeny of Phenylalanine Ammonia Lyase (PAL), which catalyses the first and essential step of the general phenylpropanoid pathway, leading from phenylalanine to p-Coumaric acid and p-Coumaroyl-CoA, the entry points of the flavonoids and lignin routes. We obtained robust evidence that the ancestor of land plants acquired a PAL via horizontal gene transfer (HGT) during symbioses with soil bacteria and fungi that are known to have established very early during the first steps of land colonization. This horizontally acquired PAL represented then the basis for further development of the phenylpropanoid pathway and plant radiation on terrestrial environments.ConclusionOur results highlight a possible crucial role of HGT from soil bacteria in the path leading to land colonization by plants and their subsequent evolution. The few functional characterizations of sediment/soil bacterial PAL (production of secondary metabolites with powerful antimicrobial activity or production of pigments) suggest that the initial advantage of this horizontally acquired PAL in the ancestor of land plants might have been either defense against an already developed microbial community and/or protection against UV.ReviewersThis article was reviewed by Purificación López-García, Janet Siefert, and Eugene Koonin.


Research in Microbiology | 1997

Molecular characterization of an n-alkane-degrading bacterial community and identification of a new species, Acinetobacter venetianus.

F. Di Cello; Milva Pepi; Franco Baldi; Renato Fani

Twenty-five bacterial strains isolated from the Venice lagoon and implicated in the degradation of n-alkanes, n-alkanols, n-alkanals and n-alkanoates were characterized in molecular and physiological terms. The isolates were grouped by amplified ribosomal DNA restriction analysis (ARDRA) into seven clusters, corresponding to seven species, six of which were identified on the basis of 16S rDNA sequencing. Genetic variability among strains was shown by random amplified polymorphic DNA (RAPD). Only strains of the new species Acinetobacter venetianus grew with n-alkanes (C10, C14 and C20) and their respective oxidation products as sole carbon sources. Strains of the other three species identified thrived on n-alkane oxidation products (n-alkanols, n-alkanals, n-alkanoates). The other three species were not able to grow on any of the substrates tested. Analysis of plasmid content showed that only A. venetianus strains harboured plasmids. These plasmids contained sequences homologous to the Pseudomonas oleovorans alkBFGH genes.


Research in Microbiology | 2003

Fluctuation of bacteria isolated from elm tissues during different seasons and from different plant organs

Stefano Mocali; Emanuela Bertelli; Francescopaolo Di Cello; Alessio Mengoni; Alessandra Sfalanga; Francesca Viliani; Anna Caciotti; Stefania Tegli; Giuseppe Surico; Renato Fani

In this work we isolated a culturable endophytic aerobic heterotrophic bacterial community from the stem and root tissues of elm trees (Ulmus spp.) and analyzed its fluctuations. A total of 724 bacterial isolates were collected at different times (April, June, September and December) from two elm trees, one infected with Elm Yellows phytoplasmas, and one which was healthy-looking. The isolates were grouped into 82 haplotypes, identified by means of amplified ribosomal DNA restriction analysis (ARDRA) using the restriction enzyme AluI, suggesting that the genetic diversity of the bacterial community was very high. The taxonomic position of the isolates belonging to the twelve main haplotypes, representing more than 72% of the total population, was determined by 16S rDNA sequencing. The main genera were Bacillus, Curtobacterium, Pseudomonas, Stenotrophomonas, Sphingomonas, Enterobacter, and Staphylococcus. The fluctuations in the bacterial community, determined by different parameters (seasonal changes, plant organ, presence of phytoplasmas) were studied, revealing that they were influenced both by variations in temperature (warm or cold according to the season) and by the organ examined (roots or stems). The role of the phytopathogenic status in these fluctuations was also discussed.


PLOS ONE | 2011

Deciphering the role of RND efflux transporters in Burkholderia cenocepacia

Silvia Bazzini; Claudia Udine; Andrea Sass; Maria Rosalia Pasca; Francesca Longo; Giovanni Emiliani; Marco Fondi; Elena Perrin; Francesca Decorosi; Carlo Viti; Luciana Giovannetti; Livia Leoni; Renato Fani; Giovanna Riccardi; Eshwar Mahenthiralingam; Silvia Buroni

Burkholderia cenocepacia J2315 is representative of a highly problematic group of cystic fibrosis (CF) pathogens. Eradication of B. cenocepacia is very difficult with the antimicrobial therapy being ineffective due to its high resistance to clinically relevant antimicrobial agents and disinfectants. RND (Resistance-Nodulation-Cell Division) efflux pumps are known to be among the mediators of multidrug resistance in Gram-negative bacteria. Since the significance of the 16 RND efflux systems present in B. cenocepacia (named RND-1 to -16) has been only partially determined, the aim of this work was to analyze mutants of B. cenocepacia strain J2315 impaired in RND-4 and RND-9 efflux systems, and assess their role in the efflux of toxic compounds. The transcriptomes of mutants deleted individually in RND-4 and RND-9 (named D4 and D9), and a double-mutant in both efflux pumps (named D4-D9), were compared to that of the wild-type B. cenocepacia using microarray analysis. Microarray data were confirmed by qRT-PCR, phenotypic experiments, and by Phenotype MicroArray analysis. The data revealed that RND-4 made a significant contribution to the antibiotic resistance of B. cenocepacia, whereas RND-9 was only marginally involved in this process. Moreover, the double mutant D4-D9 showed a phenotype and an expression profile similar to D4. The microarray data showed that motility and chemotaxis-related genes appeared to be up-regulated in both D4 and D4–D9 strains. In contrast, these gene sets were down-regulated or expressed at levels similar to J2315 in the D9 mutant. Biofilm production was enhanced in all mutants. Overall, these results indicate that in B. cenocepacia RND pumps play a wider role than just in drug resistance, influencing additional phenotypic traits important for pathogenesis.


Molecular Ecology | 1993

Use of random amplified polymorphic DNA (RAPD) for generating specific DNA probes for microorganisms

Renato Fani; Giuseppe Damiani; C. Di Serio; Enzo Gallori; Annamaria Grifoni; Marco Bazzicalupo

We report the rapid generation of DNA probes for several Azospirillum strains. This method does not require any knowledge of the genetics and/or the molecular biology of the organism (genome) to be investigated. The procedure is based on the generation of random amplified polymorphic DNA (RAPD) fingerprints using primers with an embedded restriction site. The amplification product(s) peculiar to one strain or common to two or more strains can be purified, cloned, sequenced and used as molecular probes in hybridization experiments for the detection and identification of microorganisms. We have tested this methodology in the nitrogen‐fixing bacterium Azospirillum by amplyfing the total DNA extracted from several Azospirillum strains. We have used amplification bands with different specificity as molecular probes in hybridization experiments performed on amplified DNA. Results obtained have demonstrated the usefulness of this methodology for Azospirillum. Its use in microbial ecology studies as a general strategy to generate specific DNA probes is also discussed.

Collaboration


Dive into the Renato Fani's collaboration.

Top Co-Authors

Avatar

Marco Fondi

University of Florence

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Pietro Liò

University of Cambridge

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge