Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marco H. Hofmann is active.

Publication


Featured researches published by Marco H. Hofmann.


Journal of Pharmacology and Experimental Therapeutics | 2008

Aberrant Splicing Caused by Single Nucleotide Polymorphism c.516G>T [Q172H], a Marker of CYP2B6*6, Is Responsible for Decreased Expression and Activity of CYP2B6 in Liver

Marco H. Hofmann; Julia Blievernicht; Kathrin Klein; Tanja Saussele; Elke Schaeffeler; Matthias Schwab; Ulrich M. Zanger

CYP2B6 is a polymorphic human drug metabolizing cytochrome P450 with clinical relevance for several drug substrates including cyclophosphamide, bupropion, and efavirenz. The common allele CYP2B6*6 [c. 516G>T, Q172H, and c.785A>G, K262R] has previously been associated with lower expression in human liver and with increased plasma levels of efavirenz in human immunodeficiency virus patients, but the molecular mechanism has remained unclear. We present novel data showing that hepatic CYP2B6 mRNA levels are reduced in *6 carriers, suggesting a pretranslational mechanism resulting in decreased expression. As one possibility, we first analyzed the common promoter variant, –750T>C, but the results did not suggest a prominent role in phenotype determination. In contrast, analysis of liver mRNA splicing variants demonstrated that the most common form lacking exons 4 to 6 (SV1) was tightly associated with the *6 allele and apparently also with the rare variant c.777C>A(CYP2B6*3). Further investigation using minigene constructs transfected into eukaryotic cell lines COS-1 and Huh7 demonstrated that the single nucleotide polymorphism c.516G>T in allele CYP2B6*6 was alone responsible for aberrant splicing resulting in high-splice variant (SV) 1 and low-CYP2B6 expression phenotype. Minigenes carrying the single c.785A>G polymorphism or the rare c.777C>A variant resulted in normal and intermediate expression phenotypes, respectively. In conclusion, the mechanism of the common *6 allele involves predominantly aberrant splicing, thus leading to reduced functional mRNA, protein, and activity. These results establish the single nucleotide polymorphism 516G>Tasthe causal sequence variation for severely decreased expression and function associated with CYP2B6*6.


Journal of Medicinal Chemistry | 2016

Structure-Based Design of an in Vivo Active Selective BRD9 Inhibitor

Laetitia J. Martin; Manfred Koegl; Gerd Bader; Xiao-Ling Fan Cockcroft; Oleg Fedorov; Dennis Fiegen; Thomas Gerstberger; Marco H. Hofmann; Anja F. Hohmann; Dirk Kessler; Stefan Knapp; Petr Knesl; Stefan Kornigg; Susanne Müller; Herbert Nar; Catherine Rogers; Klaus Rumpel; Otmar Schaaf; Steffen Steurer; Cynthia Tallant; Christopher R. Vakoc; Markus Zeeb; Andreas Zoephel; Mark Pearson; Guido Boehmelt; Darryl Mcconnell

Components of the chromatin remodelling switch/sucrose nonfermentable (SWI/SNF) complex are recurrently mutated in tumors, suggesting that altering the activity of the complex plays a role in oncogenesis. However, the role that the individual subunits play in this process is not clear. We set out to develop an inhibitor compound targeting the bromodomain of BRD9 in order to evaluate its function within the SWI/SNF complex. Here, we present the discovery and development of a potent and selective BRD9 bromodomain inhibitor series based on a new pyridinone-like scaffold. Crystallographic information on the inhibitors bound to BRD9 guided their development with respect to potency for BRD9 and selectivity against BRD4. These compounds modulate BRD9 bromodomain cellular function and display antitumor activity in an AML xenograft model. Two chemical probes, BI-7273 (1) and BI-9564 (2), were identified that should prove to be useful in further exploring BRD9 bromodomain biology in both in vitro and in vivo settings.


Molecular Cancer Therapeutics | 2014

Pharmacodynamic and Antineoplastic Activity of BI 836845, a Fully Human IGF Ligand-Neutralizing Antibody, and Mechanistic Rationale for Combination with Rapamycin

Katrin Friedbichler; Marco H. Hofmann; Monika Kroez; Elinborg Ostermann; Herbert Lamche; Christian Koessl; Eric Borges; Michael Pollak; Günther R. Adolf; Paul Adam

Insulin-like growth factor (IGF) signaling is thought to play a role in the development and progression of multiple cancer types. To date, therapeutic strategies aimed at disrupting IGF signaling have largely focused on antibodies that target the IGF-I receptor (IGF-IR). Here, we describe the pharmacologic profile of BI 836845, a fully human monoclonal antibody that utilizes an alternative approach to IGF signaling inhibition by selectively neutralizing the bioactivity of IGF ligands. Biochemical analyses of BI 836845 demonstrated high affinity to human IGF-I and IGF-II, resulting in effective inhibition of IGF-induced activation of both IGF-IR and IR-A in vitro. Cross-reactivity to rodent IGFs has enabled rigorous assessment of the pharmacologic activity of BI 836845 in preclinical models. Pharmacodynamic studies in rats showed potent reduction of serum IGF bioactivity in the absence of metabolic adverse effects, leading to growth inhibition as evidenced by reduced body weight gain and tail length. Moreover, BI 836845 reduced the proliferation of human cell lines derived from different cancer types and enhanced the antitumor efficacy of rapamycin by blocking a rapamycin-induced increase in upstream signaling in vitro as well as in human tumor xenograft models in nude mice. Our data suggest that BI 836845 represents a potentially more effective and tolerable approach to the inhibition of IGF signaling compared with agents that target the IGF-I receptor directly, with potential for rational combinations with other targeted agents in clinical studies. Mol Cancer Ther; 13(2); 399–409. ©2013 AACR.


Journal of Pharmacology and Experimental Therapeutics | 2015

Efficacy and mechanism of action of volasertib, a potent and selective inhibitor of Polo-like kinases, in preclinical models of acute myeloid leukemia

Dorothea Rudolph; Maria Impagnatiello; Claudia Blaukopf; Christoph Sommer; Daniel W. Gerlich; Mareike Roth; Ulrike Tontsch-Grunt; Andreas Wernitznig; Fabio Savarese; Marco H. Hofmann; Christoph Albrecht; Lena Geiselmann; Markus Reschke; Pilar Garin-Chesa; Johannes Zuber; Jürgen Moll; Günther R. Adolf; Norbert Kraut

Polo-like kinase 1 (Plk1), a member of the Polo-like kinase family of serine/threonine kinases, is a key regulator of multiple steps in mitosis. Here we report on the pharmacological profile of volasertib, a potent and selective Plk inhibitor, in multiple preclinical models of acute myeloid leukemia (AML) including established cell lines, bone marrow samples from AML patients in short-term culture, and subcutaneous as well as disseminated in vivo models in immune-deficient mice. Our results indicate that volasertib is highly efficacious as a single agent and in combination with established and emerging AML drugs, including the antimetabolite cytarabine, hypomethylating agents (decitabine, azacitidine), and quizartinib, a signal transduction inhibitor targeting FLT3. Collectively, these preclinical data support the use of volasertib as a new therapeutic approach for the treatment of AML patients, and provide a foundation for combination approaches that may further improve and prolong clinical responses.


Molecular Cancer Therapeutics | 2015

BI 885578, a Novel IGF1R/INSR Tyrosine Kinase Inhibitor with Pharmacokinetic Properties That Dissociate Antitumor Efficacy and Perturbation of Glucose Homeostasis.

Michael P. Sanderson; Joshua F. Apgar; Pilar Garin-Chesa; Marco H. Hofmann; Dirk Kessler; Jens Juergen Quant; Alexander Savchenko; Otmar Schaaf; Matthias Treu; Heather Tye; Stephan Karl Zahn; Andreas Zoephel; Eric Haaksma; Günther R. Adolf; Norbert Kraut

Inhibition of the IGF1R, INSRA, and INSRB receptor tyrosine kinases represents an attractive approach of pharmacologic intervention in cancer, owing to the roles of the IGF1R and INSRA in promoting cell proliferation and survival. However, the central role of the INSRB isoform in glucose homeostasis suggests that prolonged inhibition of this kinase could result in metabolic toxicity. We describe here the profile of the novel compound BI 885578, a potent and selective ATP-competitive IGF1R/INSR tyrosine kinase inhibitor distinguished by rapid intestinal absorption and a short in vivo half-life as a result of rapid metabolic clearance. BI 885578, administered daily per os, displayed an acceptable tolerability profile in mice at doses that significantly reduced the growth of xenografted human GEO and CL-14 colon carcinoma tumors. We found that treatment with BI 885578 is accompanied by increases in circulating glucose and insulin levels, which in turn leads to compensatory hyperphosphorylation of muscle INSRs and subsequent normalization of blood glucose within a few hours. In contrast, the normalization of IGF1R and INSR phosphorylation in GEO tumors occurs at a much slower rate. In accordance with this, BI 885578 led to a prolonged inhibition of cell proliferation and induction of apoptosis in GEO tumors. We propose that the remarkable therapeutic window observed for BI 885578 is achieved by virtue of the distinctive pharmacokinetic properties of the compound, capitalizing on the physiologic mechanisms of glucose homeostasis and differential levels of IGF1R and INSR expression in tumors and normal tissues. Mol Cancer Ther; 14(12); 2762–72. ©2015 AACR.


Cancer Chemotherapy and Pharmacology | 2016

A comprehensive pharmacokinetic/pharmacodynamics analysis of the novel IGF1R/INSR inhibitor BI 893923 applying in vitro, in vivo and in silico modeling techniques

Melanie I. Titze; Otmar Schaaf; Marco H. Hofmann; Michael P. Sanderson; Stephan Karl Zahn; Jens Juergen Quant; Thorsten Lehr

PurposeBI 893923 is a novel IGF1R/INSR tyrosine kinase inhibitor demonstrating anti-tumor efficacy and good tolerability. We aimed to characterize the relationship between BI 893923 plasma concentration, tumor biomarker modulation, tumor growth and hyperglycemia in mice using in silico modeling analyses.MethodsIn vitro molecular and cellular assays were used to demonstrate the potency and selectivity of BI 893923. Diverse in vitro DMPK assays were used to characterize the compound’s drug-like properties. Mice xenografted with human GEO tumors were treated with different doses of BI 893923 to demonstrate the compound’s efficacy, biomarker modulation and tolerability. PK/PD analyses were performed using nonlinear mixed-effects modeling.ResultsBI 893923 demonstrated potent and selective molecular inhibition of the IGF1R and INSR and demonstrated attractive drug-like properties (permeability, bioavailability). BI 893923 dose-dependently reduced GEO tumor growth and demonstrated good tolerability, characterized by transient hyperglycemia and normal body weight gain. A population PK/PD model was developed, which established relationships between BI 893923 pharmacokinetics, hyperglycemia, pIGF1R reduction and tumor growth.ConclusionBI 893923 demonstrates molecular properties consistent with a highly attractive inhibitor of the IGF1R/INSR. A generic PK/PD model was developed to support preclinical drug development and dose finding in mice.


Oncogene | 2018

The novel BET bromodomain inhibitor BI 894999 represses super-enhancer-associated transcription and synergizes with CDK9 inhibition in AML

Daniel Gerlach; Ulrike Tontsch-Grunt; Anke Baum; Johannes Popow; Dirk Scharn; Marco H. Hofmann; Harald Engelhardt; Onur Kaya; Janina Beck; Norbert Schweifer; Thomas Gerstberger; Johannes Zuber; Fabio Savarese; Norbert Kraut

Bromodomain and extra-terminal (BET) protein inhibitors have been reported as treatment options for acute myeloid leukemia (AML) in preclinical models and are currently being evaluated in clinical trials. This work presents a novel potent and selective BET inhibitor (BI 894999), which has recently entered clinical trials (NCT02516553). In preclinical studies, this compound is highly active in AML cell lines, primary patient samples, and xenografts. HEXIM1 is described as an excellent pharmacodynamic biomarker for target engagement in tumors as well as in blood. Mechanistic studies show that BI 894999 targets super-enhancer-regulated oncogenes and other lineage-specific factors, which are involved in the maintenance of the disease state. BI 894999 is active as monotherapy in AML xenografts, and in addition leads to strongly enhanced antitumor effects in combination with CDK9 inhibitors. This treatment combination results in a marked decrease of global p-Ser2 RNA polymerase II levels and leads to rapid induction of apoptosis in vitro and in vivo. Together, these data provide a strong rationale for the clinical evaluation of BI 894999 in AML.


MedChemComm | 2015

Discovery of novel amino-pyrimidine inhibitors of the insulin-like growth factor 1 (IGF1R) and insulin receptor (INSR) kinases; parallel optimization of cell potency and hERG inhibition

Heather Tye; Ulrich Guertler; Marco H. Hofmann; Moriz Mayer; Sandeep Pal; Georg Rast; Michael P. Sanderson; Otmar Schaaf; Matthias Treu; Stephan Karl Zahn

The insulin-like growth factor-1 receptor (IGF1R) and closely related insulin receptor (INSR) are receptor tyrosine kinases which have been postulated to play a role in the tumorigenesis of certain cancers. Strategies for inhibiting oncogenic signalingvia the IGF1R and INSR include IGF1R antibodies, IGF1/2 antibodies and dual IGF1R/INSR tyrosine kinase inhibitors (TKIs). IGF1R/INSR TKIs linsitinib (OSI-906) and BMS-754807 have progressed to phase II/III clinical studies in cancer patients. We describe here our efforts to develop small molecule dual inhibitors of the IGF1R/INSR receptor kinases based on an amino-pyrimidine structural class. Our main focus was the parallel optimization of cellular potency and off target activity (principally hERG inhibition) through modulation of physicochemical properties and introduction of key structural motifs using a matched molecular pairs approach and hERG homology model.


Molecular Cancer Therapeutics | 2017

The IGF1R/INSR Inhibitor BI 885578 Selectively Inhibits Growth of IGF2-Overexpressing Colorectal Cancer Tumors and Potentiates the Efficacy of Anti-VEGF Therapy

Michael P. Sanderson; Marco H. Hofmann; Pilar Garin-Chesa; Norbert Schweifer; Andreas Wernitznig; Stefan Fischer; Astrid Jeschko; Reiner Meyer; Jürgen Moll; Thomas Pecina; Heribert Arnhof; Ulrike Weyer-Czernilofsky; Stephan Karl Zahn; Günther R. Adolf; Norbert Kraut

Clinical studies of pharmacologic agents targeting the insulin-like growth factor (IGF) pathway in unselected cancer patients have so far demonstrated modest efficacy outcomes, with objective responses being rare. As such, the identification of selection biomarkers for enrichment of potential responders represents a high priority for future trials of these agents. Several reports have described high IGF2 expression in a subset of colorectal cancers, with focal IGF2 amplification being responsible for some of these cases. We defined a novel cut-off value for IGF2 overexpression based on differential expression between colorectal tumors and normal tissue samples. Analysis of two independent colorectal cancer datasets revealed IGF2 to be overexpressed at a frequency of 13% to 22%. An in vitro screen of 34 colorectal cancer cell lines revealed IGF2 expression to significantly correlate with sensitivity to the IGF1R/INSR inhibitor BI 885578. Furthermore, autocrine IGF2 constitutively activated IGF1R and Akt phosphorylation, which was inhibited by BI 885578 treatment. BI 885578 significantly delayed the growth of IGF2-high colorectal cancer xenograft tumors in mice, while combination with a VEGF-A antibody increased efficacy and induced tumor regression. Besides colorectal cancer, IGF2 overexpression was detected in more than 10% of bladder carcinoma, hepatocellular carcinoma and non-small cell lung cancer patient samples. Meanwhile, IGF2-high non-colorectal cancer cells lines displayed constitutive IGF1R phosphorylation and were sensitive to BI 885578. Our findings suggest that IGF2 may represent an attractive patient selection biomarker for IGF pathway inhibitors and that combination with VEGF-targeting agents may further improve clinical outcomes. Mol Cancer Ther; 16(10); 2223–33. ©2017 AACR.


Cancer Research | 2017

Abstract 20: Xentuzumab, a humanized IGF-1 and IGF-2 ligand neutralizing antibody, improves the antitumor efficacy of enzalutamide in preclinical models of prostate cancer

Ulrike Weyer-Czernilofsky; Marco H. Hofmann; Paul Adam; Flavio Solca; Katrin Friedbichler; Norbert Kraut; Eva Corey; Thomas Bogenrieder

Background: The proliferative and pro-survival signals driven by the insulin-like growth factor (IGF) ligands, IGF-1 and IGF-2, are transmitted through their binding to the IGF-1 receptor (IGF-1R). In addition, IGF-2 activates the insulin receptor variant A (IR-A) that is expressed during embryonic development as well as in many cancers. A large body of preclinical evidence suggests that IGF signaling plays a key role in cancer by driving therapy resistance, due to cross-talk with other signaling networks such as androgen receptor signaling. The aim of this study was to explore the potential of the IGF-1/-2 ligand blocking antibody, xentuzumab (BI 836845 [1] ), to enhance the anti-tumor activity of enzalutamide in prostate cancer cell lines and in a patient-derived prostate cancer xenograft model. Methods: Effects of enzalutamide, xentuzumab and combinations thereof on in vitro proliferation, survival, cell cycle and signaling were evaluated using the prostate cancer cell lines VCaP, DuCaP, MDA PCa 2b, and LNCaP. The in vivo efficacy of enzalutamide, alone and in combination with xentuzumab was investigated using LuCaP 96CR, a patient-derived xenograft model of castration-resistant prostate cancer. Tumors were implanted s.c. into castrate SCID mice. When tumors exceeded 150mm 3 animals were randomized into groups: 1) Control; 2) enzalutamide (50 mg/kg QD po), 3) xentuzumab (BI 836845 [1] , 200 mg/kg QW ip) in combination with enzalutamide. Results: Cell viability was more effectively reduced by the combination of enzalutamide and xentuzumab than either drug alone in three of four cell lines expressing the IGF-1R and the androgen receptor (AR). In VCaP cells, prolonged inhibition of IGF pathway signaling and enhanced blockade of proliferation as well as induction of apoptosis was observed after combination treatment. In vivo, enzalutamide monotherapy did not show significant antitumor efficacy in the LuCaP 96CR model, however, combined treatment with xentuzumab significantly inhibited progression of LuCaP 96CR tumor growth (p Conclusions: These studies demonstrated that addition of the IGF-1/-2 neutralizing antibody xentuzumab to enzalutamide results in improved anti-neoplastic activity in a subset of prostate cancer cell lines in vitro, and to re-sensitization to enzalutamide in a patient-derived xenograft model of CRPC. Reference: [1] Friedbichler K et al. (2014). Mol Cancer Ther 13(2):399-409. Citation Format: Ulrike Weyer-Czernilofsky, Marco H. Hofmann, Paul J. Adam, Flavio Solca, Katrin Friedbichler, Norbert Kraut, Eva Corey, Thomas Bogenrieder. Xentuzumab, a humanized IGF-1 and IGF-2 ligand neutralizing antibody, improves the antitumor efficacy of enzalutamide in preclinical models of prostate cancer [abstract]. In: Proceedings of the American Association for Cancer Research Annual Meeting 2017; 2017 Apr 1-5; Washington, DC. Philadelphia (PA): AACR; Cancer Res 2017;77(13 Suppl):Abstract nr 20. doi:10.1158/1538-7445.AM2017-20

Collaboration


Dive into the Marco H. Hofmann's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge