Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Norbert Kraut is active.

Publication


Featured researches published by Norbert Kraut.


Journal of Clinical Investigation | 2004

NF-κB is essential for epithelial-mesenchymal transition and metastasis in a model of breast cancer progression

Margit A. Huber; Ninel Azoitei; Bernd Baumann; Stefan Grünert; Andreas Sommer; Hubert Pehamberger; Norbert Kraut; Hartmut Beug; Thomas Wirth

The transcription factor NF-κB is activated in a range of human cancers and is thought to promote tumorigenesis, mainly due to its ability to protect transformed cells from apoptosis. To investigate the role of NF-κB in epithelial plasticity and metastasis, we utilized a well-characterized in vitro/in vivo model of mammary carcinogenesis that depends on the collaboration of the Ha-Ras oncoprotein and TGF-β. We show here that the IKK-2/IκBα/NF-κB pathway is required for the induction and maintenance of epithelial-mesenchymal transition (EMT). Inhibition of NF-κB signaling prevented EMT in Ras-transformed epithelial cells, while activation of this pathway promoted the transition to a mesenchymal phenotype even in the absence of TGF-β. Furthermore, inhibition of NF-κB activity in mesenchymal cells caused a reversal of EMT, suggesting that NF-κB is essential for both the induction and maintenance of EMT. In line with the importance of EMT for invasion, blocking of NF-κB activity abrogated the metastatic potential of mammary epithelial cells in a mouse model system. Collectively, these data provide evidence of an essential role for NF-κB during distinct steps of breast cancer progression and suggest that the cooperation of Ras- and TGF-β–dependent signaling pathways in late-stage tumorigenesis depends critically on NF-κB activity.


Current Biology | 2007

BI 2536, a potent and selective inhibitor of polo-like kinase 1, inhibits tumor growth in vivo.

Martin Steegmaier; Matthias Hoffmann; Anke Baum; Péter Lénárt; Mark Petronczki; Martin Krššák; Ulrich Gürtler; Pilar Garin-Chesa; Simone Lieb; Jens Juergen Quant; Matthias Grauert; Günther R. Adolf; Norbert Kraut; Jan-Michael Peters; Wolfgang J. Rettig

Fine-mapping of the cell-division cycle, notably the identification of mitotic kinase signaling pathways, provides novel opportunities for cancer-drug discovery. As a key regulator of multiple steps during mitotic progression across eukaryotic species, the serine/threonine-specific Polo-like kinase 1 (Plk1) is highly expressed in malignant cells and serves as a negative prognostic marker in specific human cancer types . Here, we report the discovery of a potent small-molecule inhibitor of mammalian Plk1, BI 2536, which inhibits Plk1 enzyme activity at low nanomolar concentrations. The compound potently causes a mitotic arrest and induces apoptosis in human cancer cell lines of diverse tissue origin and oncogenome signature. BI 2536 inhibits growth of human tumor xenografts in nude mice and induces regression of large tumors with well-tolerated intravenous dose regimens. In treated tumors, cells arrest in prometaphase, accumulate phosphohistone H3, and contain aberrant mitotic spindles. This mitotic arrest is followed by a surge in apoptosis, detectable by immunohistochemistry and noninvasive optical and magnetic resonance imaging. For addressing the therapeutic potential of Plk1 inhibition, BI 2536 has progressed into clinical studies in patients with locally advanced or metastatic cancers.


Current Biology | 2007

The Small-Molecule Inhibitor BI 2536 Reveals Novel Insights into Mitotic Roles of Polo-like Kinase 1

Péter Lénárt; Mark Petronczki; Martin Steegmaier; Barbara Di Fiore; Jesse J. Lipp; Matthias Hoffmann; Wolfgang J. Rettig; Norbert Kraut; Jan-Michael Peters

BACKGROUND The mitotic kinases, Cdk1, Aurora A/B, and Polo-like kinase 1 (Plk1) have been characterized extensively to further understanding of mitotic mechanisms and as potential targets for cancer therapy. Cdk1 and Aurora kinase studies have been facilitated by small-molecule inhibitors, but few if any potent Plk1 inhibitors have been identified. RESULTS We describe the cellular effects of a novel compound, BI 2536, a potent and selective inhibitor of Plk1. The fact that BI 2536 blocks Plk1 activity fully and instantaneously enabled us to study controversial and unknown functions of Plk1. Cells treated with BI 2536 are delayed in prophase but eventually import Cdk1-cyclin B into the nucleus, enter prometaphase, and degrade cyclin A, although BI 2536 prevents degradation of the APC/C inhibitor Emi1. BI 2536-treated cells lack prophase microtubule asters and thus polymerize mitotic microtubules only after nuclear-envelope breakdown and form monopolar spindles that do not stably attach to kinetochores. Mad2 accumulates at kinetochores, and cells arrest with an activated spindle-assembly checkpoint. BI 2536 prevents Plk1s enrichment at kinetochores and centrosomes, and when added to metaphase cells, it induces detachment of microtubules from kinetochores and leads to spindle collapse. CONCLUSIONS Our results suggest that Plk1s accumulation at centrosomes and kinetochores depends on its own activity and that this activity is required for maintaining centrosome and kinetochore function. Our data also show that Plk1 is not required for prophase entry, but delays transition to prometaphase, and that Emi1 destruction in prometaphase is not essential for APC/C-mediated cyclin A degradation.


The EMBO Journal | 2001

A highly selective telomerase inhibitor limiting human cancer cell proliferation

Klaus Damm; Ulrike Hemmann; Pilar Garin-Chesa; Norbert Hauel; Iris Kauffmann; Henning Priepke; Claudia Niestroj; Christine Daiber; Barbara Enenkel; Bernd Guilliard; Ines Lauritsch; Elfriede Müller; Emanuelle Pascolo; Gabriele Sauter; Milena Pantic; Uwe M. Martens; Christian Wenz; Joachim Lingner; Norbert Kraut; Wolfgang J. Rettig; Andreas Schnapp

Telomerase, the ribonucleoprotein enzyme maintaining the telomeres of eukaryotic chromosomes, is active in most human cancers and in germline cells but, with few exceptions, not in normal human somatic tissues. Telomere maintenance is essential to the replicative potential of malignant cells and the inhibition of telomerase can lead to telomere shortening and cessation of unrestrained proliferation. We describe novel chemical compounds which selectively inhibit telomerase in vitro and in vivo. Treatment of cancer cells with these inhibitors leads to progressive telomere shortening, with no acute cytotoxicity, but a proliferation arrest after a characteristic lag period with hallmarks of senescence, including morphological, mitotic and chromosomal aberrations and altered patterns of gene expression. Telomerase inhibition and telomere shortening also result in a marked reduction of the tumorigenic potential of drug‐treated tumour cells in a mouse xenograft model. This model was also used to demonstrate in vivo efficacy with no adverse side effects and uncomplicated oral administration of the inhibitor. These findings indicate that potent and selective, non‐nucleosidic telomerase inhibitors can be designed as novel cancer treatment modalities.


Journal of Clinical Investigation | 2006

Autocrine PDGFR signaling promotes mammary cancer metastasis

Martin Jechlinger; Andreas Sommer; Richard Moriggl; Peter Seither; Norbert Kraut; Paola Capodiecci; Michael J. Donovan; Carlos Cordon-Cardo; Hartmut Beug; Stefan Grünert

Metastasis is the major cause of cancer morbidity, but strategies for direct interference with invasion processes are lacking. Dedifferentiated, late-stage tumor cells secrete multiple factors that represent attractive targets for therapeutic intervention. Here we show that metastatic potential of oncogenic mammary epithelial cells requires an autocrine PDGF/PDGFR loop, which is established as a consequence of TGF-beta-induced epithelial-mesenchymal transition (EMT), a faithful in vitro correlate of metastasis. The cooperation of autocrine PDGFR signaling with oncogenic Ras hyperactivates PI3K and is required for survival during EMT. Autocrine PDGFR signaling also contributes to maintenance of EMT, possibly through activation of STAT1 and other distinct pathways. Inhibition of PDGFR signaling interfered with EMT and caused apoptosis in murine and human mammary carcinoma cell lines. Consequently, overexpression of a dominant-negative PDGFR or application of the established cancer drug STI571 interfered with experimental metastasis in mice. Similarly, in mouse mammary tumor virus-Neu (MMTV-Neu) transgenic mice, TGF-beta enhanced metastasis of mammary tumors, induced EMT, and elevated PDGFR signaling. Finally, expression of PDGFRalpha and -beta correlated with invasive behavior in human mammary carcinomas. Thus, autocrine PDGFR signaling plays an essential role during cancer progression, suggesting a novel application of STI571 to therapeutically interfere with metastasis.


Oncogene | 2003

Expression profiling of epithelial plasticity in tumor progression

Martin Jechlinger; Stefan Grünert; Ido H Tamir; Elzbieta Janda; Susanna Lüdemann; Thomas Waerner; Peter Seither; Andreas Weith; Hartmut Beug; Norbert Kraut

Epithelial-to-mesenchymal transition (EMT), a switch of polarized epithelial cells to a migratory, fibroblastoid phenotype, is increasingly considered as an important event during malignant tumor progression and metastasis. To identify molecular players involved in EMT and metastasis, we performed expression profiling of a set of combined in vitro/in vivo cellular models, based on clonal, fully polarized mammary epithelial cells. Seven closely related cell pairs were used, which were modified by defined oncogenes and/or external factors and showed specific aspects of epithelial plasticity relevant to cell migration, local invasion and metastasis. Since mRNA levels do not necessarily reflect protein levels in cells, we used an improved expression profiling method based on polysome-bound RNA, suitable to analyse global gene expression on Affymetrix chips. A substantial fraction of all regulated genes was found to be exclusively controlled at the translational level. Furthermore, profiling of the above multiple cell pairs allowed one to identify small numbers of genes by cluster analysis, specifically correlating gene expression with EMT, metastasis, scattering and/or oncogene function. A small set of genes specifically regulated during EMT was identified, including key regulators and signaling pathways involved in cell proliferation, epithelial polarity, survival and trans-differentiation to mesenchymal-like cells with invasive behavior.


Nature | 2015

Transcriptional plasticity promotes primary and acquired resistance to BET inhibition

Philipp Rathert; Mareike Roth; Tobias Neumann; Felix Muerdter; Jae-Seok Roe; Matthias Muhar; Sumit Deswal; Sabine Cerny-Reiterer; Barbara Peter; Julian Jude; Thomas Hoffmann; Łukasz M. Boryń; Elin Axelsson; Norbert Schweifer; Ulrike Tontsch-Grunt; Lukas E. Dow; Davide Gianni; Mark Pearson; Peter Valent; Alexander Stark; Norbert Kraut; Christopher R. Vakoc; Johannes Zuber

Following the discovery of BRD4 as a non-oncogene addiction target in acute myeloid leukaemia (AML), bromodomain and extra terminal protein (BET) inhibitors are being explored as a promising therapeutic avenue in numerous cancers. While clinical trials have reported single-agent activity in advanced haematological malignancies, mechanisms determining the response to BET inhibition remain poorly understood. To identify factors involved in primary and acquired BET resistance in leukaemia, here we perform a chromatin-focused RNAi screen in a sensitive MLL–AF9;NrasG12D-driven AML mouse model, and investigate dynamic transcriptional profiles in sensitive and resistant mouse and human leukaemias. Our screen shows that suppression of the PRC2 complex, contrary to effects in other contexts, promotes BET inhibitor resistance in AML. PRC2 suppression does not directly affect the regulation of Brd4-dependent transcripts, but facilitates the remodelling of regulatory pathways that restore the transcription of key targets such as Myc. Similarly, while BET inhibition triggers acute MYC repression in human leukaemias regardless of their sensitivity, resistant leukaemias are uniformly characterized by their ability to rapidly restore MYC transcription. This process involves the activation and recruitment of WNT signalling components, which compensate for the loss of BRD4 and drive resistance in various cancer models. Dynamic chromatin immunoprecipitation sequencing and self-transcribing active regulatory region sequencing of enhancer profiles reveal that BET-resistant states are characterized by remodelled regulatory landscapes, involving the activation of a focal MYC enhancer that recruits WNT machinery in response to BET inhibition. Together, our results identify and validate WNT signalling as a driver and candidate biomarker of primary and acquired BET resistance in leukaemia, and implicate the rewiring of transcriptional programs as an important mechanism promoting resistance to BET inhibitors and, potentially, other chromatin-targeted therapies.


The EMBO Journal | 1998

Requirement of the mouse I-mfa gene for placental development and skeletal patterning

Norbert Kraut; Lauren Snider; C.-M.Amy Chen; Stephen J. Tapscott; Mark Groudine

The bHLH‐repressor protein I‐mfa binds to MyoD family members, inhibits their activity, and blocks their nuclear import and binding to DNA. In situ hybridization analysis demonstrated that mouse I‐mfa was highly expressed in extraembryonic lineages, in the sclerotome, and subsequently within mesenchymal precursors of the axial and appendicular skeleton, before chondrogenesis occurs. Targeted deletion of I‐mfa in a C57Bl/6 background resulted in embryonic lethality around E10.5, associated with a placental defect and a markedly reduced number of trophoblast giant cells. Overexpression of I‐mfa in rat trophoblast (Rcho‐1) stem cells induced differentiation into trophoblast giant cells. I‐mfa interacted with the bHLH protein Mash2, a negative regulator of trophoblast giant cell formation, and inhibited its transcriptional activity in cell culture. In contrast, I‐mfa did not interfere with the activity of the bHLH protein Hand1, a positive regulator of giant cell differentiation. Interestingly, I‐mfa‐null embryos on a 129/Sv background had no placental defect, generally survived to adulthood, and exhibited delayed caudal neural tube closure and skeletal patterning defects that included fusions of ribs, vertebral bodies and abnormal formation of spinous processes. Our results indicate that I‐mfa plays an important role in trophoblast and chondrogenic differentiation by negatively regulating a subset of lineage‐restricted bHLH proteins.


Proteomics | 2007

Proteomic and functional alterations in brain mitochondria from Tg2576 mice occur before amyloid plaque deposition.

Wolfgang Rist; Lothar Kussmaul; Johannes Vogel; Matthias Berg; Karin M. Danzer; Norbert Kraut; Bastian Hengerer

Synaptic dysfunction is an early event in Alzheimers disease patients and has also been detected in transgenic mouse models. In the present study, we analyzed proteomic changes in synaptosomal fractions from Tg2576 mice that overexpress mutant human amyloid precursor protein (K670N, M671L) and from their nontransgenic littermates. Cortical and hippocampal tissue was microdissected at the onset of cognitive impairment, but before deposition of amyloid plaques. Crude synaptosomal fractions were prepared by differential centrifugation, proteins were separated by 2‐D DIGE and identified by MS/MS. Significant alterations were detected in mitochondrial heat shock protein 70 pointing to a mitochondrial stress response. Subsequently, synaptosomal versus nonsynaptic mitochondria were purified from Tg2576 mice brains by density gradient centrifugation. Mitochondrial proteins were separated by IEF or Blue‐native gel electrophoresis in the first dimension and SDS‐PAGE in the second dimension. Numerous changes in the protein subunit composition of the respiratory chain complexes I and III were identified. Levels of corresponding mRNAs remain unchanged as shown by Affymetrix oligonucleotide array analysis. Functional examination revealed impaired state 3 respiration and uncoupled respiration in brain mitochondria from young Tg2576 mice. By immunoblotting, amyloid‐beta oligomers were detected in synaptosomal fractions from Tg2576 mice and reduced glucose metabolism was observed in Tg2576 mice brains by [14C]‐2‐deoxyglucose infusion. Taken together, we demonstrate alterations in the mitochondrial proteome and function that occur in Tg2576 mice brains before amyloid plaque deposition suggesting that mitochondria are early targets of amyloid‐beta aggregates.


Science Signaling | 2011

Systematic Phosphorylation Analysis of Human Mitotic Protein Complexes

Björn Hegemann; James R. A. Hutchins; Otto Hudecz; Maria Novatchkova; Jonathan Rameseder; Martina M. Sykora; Shang-Yun Liu; Michael Mazanek; Péter Lénárt; Jean-Karim Hériché; Ina Poser; Norbert Kraut; Anthony A. Hyman; Michael B. Yaffe; Karl Mechtler; Jan-Michael Peters

Analysis of the phosphorylation of mitotic protein complexes suggests that specific members of the complexes relay regulatory signals to these molecular machines. Regulating Mitotic Machines Most proteins do not function in isolation; they are part of large macromolecular complexes. Hegemann et al. used information available about the protein complexes involved in mitosis and then performed mass spectrometry to determine the phosphoproteome of these mitotic machines. Certain proteins in each complex were phosphorylated at many more sites than other proteins in the complex and thus may represent master regulators of the activities of these mitotic machines. Experiments with specific inhibitors of Polo-like kinase 1 and Aurora kinase B enabled the identification of specific targets of these mitotic kinases, providing insight into the mechanism by which these two kinases regulate the activity of mitotic complexes to control progression through the complicated process of cell division. Progression through mitosis depends on a large number of protein complexes that regulate the major structural and physiological changes necessary for faithful chromosome segregation. Most, if not all, of the mitotic processes are regulated by a set of mitotic protein kinases that control protein activity by phosphorylation. Although many mitotic phosphorylation events have been identified in proteome-scale mass spectrometry studies, information on how these phosphorylation sites are distributed within mitotic protein complexes and which kinases generate these phosphorylation sites is largely lacking. We used systematic protein-affinity purification combined with mass spectrometry to identify 1818 phosphorylation sites in more than 100 mitotic protein complexes. In many complexes, the phosphorylation sites were concentrated on a few subunits, suggesting that these subunits serve as “switchboards” to relay the kinase-regulatory signals within the complexes. Consequent bioinformatic analyses identified potential kinase-substrate relationships for most of these sites. In a subsequent in-depth analysis of key mitotic regulatory complexes with the Aurora kinase B (AURKB) inhibitor Hesperadin and a new Polo-like kinase (PLK1) inhibitor, BI 4834, we determined the kinase dependency for 172 phosphorylation sites on 41 proteins. Combination of the results of the cellular studies with Scansite motif prediction enabled us to identify 14 sites on six proteins as direct candidate substrates of AURKB or PLK1.

Collaboration


Dive into the Norbert Kraut's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jan-Michael Peters

Research Institute of Molecular Pathology

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge