Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marcus J. Tindall is active.

Publication


Featured researches published by Marcus J. Tindall.


Bulletin of Mathematical Biology | 2008

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis II: Bacterial Populations

Marcus J. Tindall; Philip K. Maini; Steven L. Porter; Judith P. Armitage

We review the application of mathematical modeling to understanding the behavior of populations of chemotactic bacteria. The application of continuum mathematical models, in particular generalized Keller–Segel models, is discussed along with attempts to incorporate the microscale (individual) behavior on the macroscale, modeling the interaction between different species of bacteria, the interaction of bacteria with their environment, and methods used to obtain experimentally verified parameter values. We allude briefly to the role of modeling pattern formation in understanding collective behavior within bacterial populations. Various aspects of each model are discussed and areas for possible future research are postulated.


Bulletin of Mathematical Biology | 2008

Overview of Mathematical Approaches Used to Model Bacterial Chemotaxis I: The Single Cell

Marcus J. Tindall; Steven L. Porter; Philip K. Maini; G. Gaglia; Judith P. Armitage

Mathematical modeling of bacterial chemotaxis systems has been influential and insightful in helping to understand experimental observations. We provide here a comprehensive overview of the range of mathematical approaches used for modeling, within a single bacterium, chemotactic processes caused by changes to external gradients in its environment. Specific areas of the bacterial system which have been studied and modeled are discussed in detail, including the modeling of adaptation in response to attractant gradients, the intracellular phosphorylation cascade, membrane receptor clustering, and spatial modeling of intracellular protein signal transduction. The importance of producing robust models that address adaptation, gain, and sensitivity are also discussed. This review highlights that while mathematical modeling has aided in understanding bacterial chemotaxis on the individual cell scale and guiding experimental design, no single model succeeds in robustly describing all of the basic elements of the cell. We conclude by discussing the importance of this and the future of modeling in this area.


Physical Biology | 2011

Comparing a discrete and continuum model of the intestinal crypt.

Philip J. Murray; Alex Walter; Alexander G. Fletcher; Carina M. Edwards; Marcus J. Tindall; Philip K. Maini

The integration of processes at different scales is a key problem in the modelling of cell populations. Owing to increased computational resources and the accumulation of data at the cellular and subcellular scales, the use of discrete, cell-level models, which are typically solved using numerical simulations, has become prominent. One of the merits of this approach is that important biological factors, such as cell heterogeneity and noise, can be easily incorporated. However, it can be difficult to efficiently draw generalizations from the simulation results, as, often, many simulation runs are required to investigate model behaviour in typically large parameter spaces. In some cases, discrete cell-level models can be coarse-grained, yielding continuum models whose analysis can lead to the development of insight into the underlying simulations. In this paper we apply such an approach to the case of a discrete model of cell dynamics in the intestinal crypt. An analysis of the resulting continuum model demonstrates that there is a limited region of parameter space within which steady-state (and hence biologically realistic) solutions exist. Continuum model predictions show good agreement with corresponding results from the underlying simulations and experimental data taken from murine intestinal crypts.


Biochemical Journal | 2012

Feedback regulation by Atf3 in the endothelin-1-responsive transcriptome of cardiomyocytes: Egr1 is a principal Atf3 target

Alejandro Giraldo; Oliver P.T. Barrett; Marcus J. Tindall; Stephen J. Fuller; Emre Amirak; Bonhi S. Bhattacharya; Peter H. Sugden; Angela Clerk

Endothelin-1 promotes cardiomyocyte hypertrophy by inducing changes in gene expression. Immediate early genes including Atf3 (activating transcription factor 3), Egr1 (early growth response 1) and Ptgs2 (prostaglandin-endoperoxide synthase 2) are rapi-dly and transiently up-regulated by endothelin-1 in cardiomyocytes. Atf3 regulates the expression of downstream genes and is implicated in negative feedback regulation of other immediate early genes. To identify Atf3-regulated genes, we knocked down Atf3 expression in cardiomyocytes exposed to endothelin-1 and used microarrays to interrogate the transcriptomic effects. The expression of 23 mRNAs (including Egr1 and Ptgs2) was enhanced and the expression of 25 mRNAs was inhibited by Atf3 knockdown. Using quantitative PCR, we determined that knockdown of Atf3 had little effect on up-regulation of Egr1 mRNA over 30 min, but abolished the subsequent decline, causing sustained Egr1 mRNA expression and enhanced protein expression. This resulted from direct binding of Atf3 to the Egr1 promoter. Mathematical modelling established that Atf3 can suffice to suppress Egr1 expression. Given the widespread co-regulation of Atf3 with Egr1, we suggest that the Atf3–Egr1 negative feedback loop is of general significance. Loss of Atf3 caused abnormal cardiomyocyte growth, presumably resulting from the dysregulation of target genes. The results of the present study therefore identify Atf3 as a nexus in cardiomyocyte hypertrophy required to facilitate the full and proper growth response.


PLOS Computational Biology | 2010

Modeling Chemotaxis Reveals the Role of Reversed Phosphotransfer and a Bi-Functional Kinase-Phosphatase

Marcus J. Tindall; Steven L. Porter; Philip K. Maini; Judith P. Armitage

Understanding how multiple signals are integrated in living cells to produce a balanced response is a major challenge in biology. Two-component signal transduction pathways, such as bacterial chemotaxis, comprise histidine protein kinases (HPKs) and response regulators (RRs). These are used to sense and respond to changes in the environment. Rhodobacter sphaeroides has a complex chemosensory network with two signaling clusters, each containing a HPK, CheA. Here we demonstrate, using a mathematical model, how the outputs of the two signaling clusters may be integrated. We use our mathematical model supported by experimental data to predict that: (1) the main RR controlling flagellar rotation, CheY6, aided by its specific phosphatase, the bifunctional kinase CheA3, acts as a phosphate sink for the other RRs; and (2) a phosphorelay pathway involving CheB2 connects the cytoplasmic cluster kinase CheA3 with the polar localised kinase CheA2, and allows CheA3-P to phosphorylate non-cognate chemotaxis RRs. These two mechanisms enable the bifunctional kinase/phosphatase activity of CheA3 to integrate and tune the sensory output of each signaling cluster to produce a balanced response. The signal integration mechanisms identified here may be widely used by other bacteria, since like R. sphaeroides, over 50% of chemotactic bacteria have multiple cheA homologues and need to integrate signals from different sources.


Journal of Theoretical Biology | 2014

A mathematical model of the sterol regulatory element binding protein 2 cholesterol biosynthesis pathway

Bonhi S. Bhattacharya; P. K. Sweby; Anne Marie Minihane; Kim G. Jackson; Marcus J. Tindall

Cholesterol is one of the key constituents for maintaining the cellular membrane and thus the integrity of the cell itself. In contrast high levels of cholesterol in the blood are known to be a major risk factor in the development of cardiovascular disease. We formulate a deterministic nonlinear ordinary differential equation model of the sterol regulatory element binding protein 2 (SREBP-2) cholesterol genetic regulatory pathway in a hepatocyte. The mathematical model includes a description of genetic transcription by SREBP-2 which is subsequently translated to mRNA leading to the formation of 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR), a main regulator of cholesterol synthesis. Cholesterol synthesis subsequently leads to the regulation of SREBP-2 via a negative feedback formulation. Parameterised with data from the literature, the model is used to understand how SREBP-2 transcription and regulation affects cellular cholesterol concentration. Model stability analysis shows that the only positive steady-state of the system exhibits purely oscillatory, damped oscillatory or monotic behaviour under certain parameter conditions. In light of our findings we postulate how cholesterol homeostasis is maintained within the cell and the advantages of our model formulation are discussed with respect to other models of genetic regulation within the literature.


Wiley Interdisciplinary Reviews: Systems Biology and Medicine | 2012

Theoretical insights into bacterial chemotaxis.

Marcus J. Tindall; Eamonn A. Gaffney; Philip K. Maini; Judith P. Armitage

Research into understanding bacterial chemotactic systems has become a paradigm for Systems Biology. Experimental and theoretical researchers have worked hand‐in‐hand for over 40 years to understand the intricate behavior driving bacterial species, in particular how such small creatures, usually not more than 5 µm in length, detect and respond to small changes in their extracellular environment. In this review we highlight the importance that theoretical modeling has played in providing new insight and understanding into bacterial chemotaxis. We begin with an overview of the bacterial chemotaxis sensory response, before reviewing the role of theoretical modeling in understanding elements of the system on the single cell scale and features underpinning multiscale extensions to population models. WIREs Syst Biol Med 2012 doi: 10.1002/wsbm.1168


PLOS Computational Biology | 2015

Regulation of early steps of GPVI signal transduction by phosphatases: a systems biology approach

Joanne L. Dunster; Francoise Mazet; Michael J. Fry; Jonathan M. Gibbins; Marcus J. Tindall

We present a data-driven mathematical model of a key initiating step in platelet activation, a central process in the prevention of bleeding following Injury. In vascular disease, this process is activated inappropriately and causes thrombosis, heart attacks and stroke. The collagen receptor GPVI is the primary trigger for platelet activation at sites of injury. Understanding the complex molecular mechanisms initiated by this receptor is important for development of more effective antithrombotic medicines. In this work we developed a series of nonlinear ordinary differential equation models that are direct representations of biological hypotheses surrounding the initial steps in GPVI-stimulated signal transduction. At each stage model simulations were compared to our own quantitative, high-temporal experimental data that guides further experimental design, data collection and model refinement. Much is known about the linear forward reactions within platelet signalling pathways but knowledge of the roles of putative reverse reactions are poorly understood. An initial model, that includes a simple constitutively active phosphatase, was unable to explain experimental data. Model revisions, incorporating a complex pathway of interactions (and specifically the phosphatase TULA-2), provided a good description of the experimental data both based on observations of phosphorylation in samples from one donor and in those of a wider population. Our model was used to investigate the levels of proteins involved in regulating the pathway and the effect of low GPVI levels that have been associated with disease. Results indicate a clear separation in healthy and GPVI deficient states in respect of the signalling cascade dynamics associated with Syk tyrosine phosphorylation and activation. Our approach reveals the central importance of this negative feedback pathway that results in the temporal regulation of a specific class of protein tyrosine phosphatases in controlling the rate, and therefore extent, of GPVI-stimulated platelet activation.


Journal of the Royal Society Interface | 2013

Response kinetics in the complex chemotaxis signalling pathway of Rhodobacter sphaeroides

Mila Kojadinovic; Judith P. Armitage; Marcus J. Tindall; George H. Wadhams

Chemotaxis is one of the best-characterized signalling systems in biology. It is the mechanism by which bacteria move towards optimal environments and is implicated in biofilm formation, pathogenesis and symbiosis. The properties of the bacterial chemosensory response have been described in detail for the single chemosensory pathway of Escherichia coli. We have characterized the properties of the chemosensory response of Rhodobacter sphaeroides, an α-proteobacterium with multiple chemotaxis pathways, under two growth conditions allowing the effects of protein expression levels and cell architecture to be investigated. Using tethered cell assays, we measured the responses of the system to step changes in concentration of the attractant propionate and show that, independently of the growth conditions, R. sphaeroides is chemotactic over at least five orders of magnitude and has a sensing profile following Webers Law. Mathematical modelling also shows that, as E. coli, R. sphaeroides is capable of showing fold-change detection (FCD). Our results indicate that general features of bacterial chemotaxis such as the range and sensitivity of detection, adaptation times, adherence to Webers Law and the presence of FCD may be integral features of chemotaxis systems in general, regardless of network complexity, protein expression levels and cellular architecture across different species.


Journal of Theoretical Biology | 2009

A continuum receptor model of hepatic lipoprotein metabolism

Marcus J. Tindall; Jonathan A. D. Wattis; Brendan O’Malley; L. Pickersgill; Kim G. Jackson

A mathematical model describing the uptake of low density lipoprotein (LDL) and very low density lipoprotein (VLDL) particles by a single hepatocyte cell is formulated and solved. The model includes a description of the dynamic change in receptor density on the surface of the cell due to the binding and dissociation of the lipoprotein particles, the subsequent internalisation of bound particles, receptors and unbound receptors, the recycling of receptors to the cell surface, cholesterol dependent de novo receptor formation by the cell and the effect that particle uptake has on the cells overall cholesterol content. The effect that blocking access to LDL receptors by VLDL, or internalisation of VLDL particles containing different amounts of apolipoprotein E (we will refer to these particles as VLDL-2 and VLDL-3) has on LDL uptake is explored. By comparison with experimental data we find that measures of cell cholesterol content are important in differentiating between the mechanisms by which VLDL is thought to inhibit LDL uptake. We extend our work to show that in the presence of both types of VLDL particle (VLDL-2 and VLDL-3), measuring relative LDL uptake does not allow differentiation between the results of blocking and internalisation of each VLDL particle to be made. Instead by considering the intracellular cholesterol content it is found that internalisation of VLDL-2 and VLDL-3 leads to the highest intracellular cholesterol concentration. A sensitivity analysis of the model reveals that binding, unbinding and internalisation rates, the fraction of receptors recycled and the rate at which the cholesterol dependent free receptors are created by the cell have important implications for the overall uptake dynamics of either VLDL or LDL particles and subsequent intracellular cholesterol concentration.

Collaboration


Dive into the Marcus J. Tindall's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge