Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Marepalli B. Rao is active.

Publication


Featured researches published by Marepalli B. Rao.


Journal of Biomechanics | 2008

Effect of scaffold material, construct length and mechanical stimulation on the in vitro stiffness of the engineered tendon construct

Victor S. Nirmalanandhan; Marepalli B. Rao; Jason T. Shearn; Natalia Juncosa-Melvin; Cindi Gooch; David L. Butler

Introducing mesenchymal stem cell (MSC)-seeded collagen constructs into load-protected wound sites in the rabbit patellar and Achilles tendons significantly improves their repair outcome compared to natural healing of the unfilled defect. However, these constructs would not be acceptable alternatives for repairing complete tendon ruptures because they lack the initial stiffness at the time of surgery to resist the expected peak in vivo forces thereafter. Since the stiffness of these constructs has also been shown to positively correlate with the stiffness of the subsequent repairs, improving initial stiffness by appropriate selection of in vitro culture conditions would seem crucial. In this study we examined the individual and combined effects of collagen scaffold type, construct length, and mechanical stimulation on in vitro implant stiffness. Two levels each of scaffold material (collagen gel vs. collagen sponge), construct length (short vs. long), and mechanical stimulation (stimulated vs. non-stimulated) were examined. Our results indicate that all three treatment factors influenced construct linear stiffness. Increasing the length of the construct had the greatest effect on the stiffness compared to introducing mechanical stimulation or changing the scaffold material. A significant interaction was also found between length and stimulation. Of the eight groups studied, longer, stimulated, cell-sponge constructs showed the highest in vitro linear stiffness. We now plan in vivo studies to determine if higher stiffness constructs generate higher stiffness repairs 12 weeks after surgery and if in vitro construct stiffness continues to correlate with in vivo repair parameters like linear stiffness.


BJUI | 2012

Survival of patients with small cell carcinoma of the prostate during 1973–2003: a population‐based study

Sundeep Deorah; Marepalli B. Rao; Rachna Raman; Krishnanath Gaitonde; James F. Donovan

Study Type – Therapy (inception cohort)


Journal of Biomechanical Engineering-transactions of The Asme | 2007

Mechanical Stimulation of Tissue Engineered Tendon Constructs: Effect of Scaffold Materials

Victor S. Nirmalanandhan; Matthew R. Dressler; Jason T. Shearn; Natalia Juncosa-Melvin; Marepalli B. Rao; Cynthia Gooch; Gino Bradica; David L. Butler

Our group has shown that numerous factors can influence how tissue engineered tendon constructs respond to in vitro mechanical stimulation. Although one study showed that stimulating mesenchymal stem cell (MSC)-collagen sponge constructs significantly increased construct linear stiffness and repair biomechanics, a second study showed no such effect when a collagen gel replaced the sponge. While these results suggest that scaffold material impacts the response of MSCs to mechanical stimulation, a well-designed intra-animal study was needed to directly compare the effects of type-I collagen gel versus type-I collagen sponge in regulating MSC response to a mechanical stimulus. Eight constructs from each cell line (n=8 cell lines) were created in specially designed silicone dishes. Four constructs were created by seeding MSCs on a type-I bovine collagen sponge, and the other four were formed by seeding MSCs in a purified bovine collagen gel. In each dish, two cell-sponge and two cell-gel constructs from each line were then mechanically stimulated once every 5 min to a peak strain of 2.4%, for 8 h/day for 2 weeks. The other dish remained in an incubator without stimulation for 2 weeks. After 14 days, all constructs were failed to determine mechanical properties. Mechanical stimulation significantly improved the linear stiffness (0.048+/-0.009 versus 0.015+/-0.004; mean+/-SEM (standard error of the mean ) N/mm) and linear modulus (0.016+/-0.004 versus 0.005+/-0.001; mean+/-SEM MPa) of cell-sponge constructs. However, the same stimulus produced no such improvement in cell-gel construct properties. These results confirm that collagen sponge rather than collagen gel facilitates how cells respond to a mechanical stimulus and may be the scaffold of choice in mechanical stimulation studies to produce functional tissue engineered structures.


IEEE Journal on Selected Areas in Communications | 2012

Modeling and Validation of Channel Idleness and Spectrum Availability for Cognitive Networks

Chittabrata Ghosh; Sumit Roy; Marepalli B. Rao

The potential of successful cognitive radio networks operating in TV White Spaces (and other future bands re-allocated for unlicensed operation) has led to significant upsurge of interest in their design optimization - particularly those that are cross-layer in nature, involving both MAC protocols as well as physical layer aspects such as channel sensing. Typically, these seek to optimize a network-level metric (notably, aggregate throughput) of secondary (cognitive) network subject to interference constraints on the primary. In turn, this requires suitable sensing by cognitive users to detect availability of primary channels (currently unused by the protected incumbents) for opportunistic usage. To date, most studies have used largely hypothetical assumptions regarding channel idleness and resulting spectrum availability due to primary user dynamics. For example, idleness of channels over any spectrum are typically assumed to be an independent and identically distributed Bernoulli sequence. In contrast, nearly all real-time measurements suggest that channel idleness is frequency dependent, i.e., the probability that a channel is idle depends on the channel location. Cognitive radio research thus increasingly needs more realistic and validated models for channel idleness as the foundation of credible cross-layer analysis; this is the primary contribution of our work. We use two sets of real-time measurements conducted in disparate geographic locations over four distinct time intervals to show that channel idleness is appropriately modeled as independent but non-identical (i.n.i.d.) Bernoulli variables characterized by p_i, the probability of idleness for the i-th channel. We validate that Beta distribution can be used for modeling the variations in channel idleness probabilities; the Beta distribution parameters are estimated from the data to produce the best model fit. Based on the validated i.n.i.d. model, we build a predictive model by computing the availability probability of k channels, i.e, P{N_{idle} = k}, where N_{idle} denotes the number of idle channels over the spectrum of N channels. However, the combinatorial complexity inherent in the computation of P{N_{idle} = k} suggests the need for efficient approximations. We accomplish this by classifying idleness of channels based on the magnitude of p_i, and propose a novel Poisson-normal approximation for computing P{N_{idle} = k}. For validation, the distribution obtained from our technique is compared with the exact distribution and normal approximation using the approximation error criterion.


Tissue Engineering Part A | 2008

Improving linear stiffness of the cell-seeded collagen sponge constructs by varying the components of the mechanical stimulus.

Victor S. Nirmalanandhan; Jason T. Shearn; Natalia Juncosa-Melvin; Marepalli B. Rao; Cynthia Gooch; Abhishek Jain; Gino Bradica; David L. Butler

In vitro mechanical stimulation has been reported to induce cell alignment and increase cellular proliferation and collagen synthesis. Our group has previously reported that in vitro mechanical stimulation of tissue-engineered tendon constructs significantly increases construct stiffness and repair biomechanics after surgery. However, these studies used a single mechanical stimulation profile, the latter composed of multiple components whose individual and combined effects on construct properties remain unknown. Thus, the purpose of this study was to understand the relative importance of a subset of these components on construct stiffness. To try to optimize the resulting mechanical stimulus, we used an iterative process to vary peak strain, cycle number, and cycle repetition while controlling cycle frequency (1 Hz), rise and fall times (25% and 17% of the period, respectively), hours of stimulation/day (8 h/day), and total time of stimulation (12 days). Two levels of peak strain (1.2 % and 2.4%), cycle number (100 and 3000 cycles/day), and cycle repetition (1 and 20) were first examined. Higher levels of peak strain and cycle number were then examined to optimize the stimulus using response surface methodology. Our results indicate that constructs stimulated with 2.4% strain, 3000 cycles/day, and one cycle repetition produced the stiffest constructs. Given the significant positive correlations we have previously found between construct stiffness and repair biomechanics at 12 weeks post-surgery, these in vitro enhancements offer the prospect of further improving repair biomechanics.


Arthritis Care and Research | 2011

Effectiveness of Dexamethasone Iontophoresis for Temporomandibular Joint Involvement in Juvenile Idiopathic Arthritis

Rina Mina; Paula Melson; Stephanie Powell; Marepalli B. Rao; Claas Hinze; Murray H. Passo; T. Brent Graham; Hermine I. Brunner

Temporomandibular joint (TMJ) involvement is common in juvenile idiopathic arthritis (JIA). Dexamethasone iontophoresis (DIP) uses low‐grade electric currents for transdermal dexamethasone delivery into deeper anatomic structures. The purpose of this study was to assess the safety and effectiveness of DIP for the treatment of TMJ involvement in JIA, and to delineate variables that are associated with improvement after DIP.


Human Genomics | 2013

Rank-based genome-wide analysis reveals the association of Ryanodine receptor-2 gene variants with childhood asthma among human populations

Lili Ding; Tilahun Abebe; Joseph Beyene; Russell A. Wilke; Arnon Goldberg; Jessica G. Woo; Lisa J. Martin; Marc E. Rothenberg; Marepalli B. Rao; Gurjit K. Khurana Hershey; Ranajit Chakraborty; Tesfaye B. Mersha

BackgroundThe standard approach to determine unique or shared genetic factors across populations is to identify risk alleles in one population and investigate replication in others. However, since populations differ in DNA sequence information, allele frequencies, effect sizes, and linkage disequilibrium patterns, SNP association using a uniform stringent threshold on p values may not be reproducible across populations. Here, we developed rank-based methods to investigate shared or population-specific loci and pathways for childhood asthma across individuals of diverse ancestry. We performed genome-wide association studies on 859,790 SNPs genotyped in 527 affected offspring trios of European, African, and Hispanic ancestry using publically available asthma database in the Genotypes and Phenotypes database.ResultsRank-based analyses showed that there are shared genetic factors for asthma across populations, more at the gene and pathway levels than at the SNP level. Although the top 1,000 SNPs were not shared, 11 genes (RYR2, PDE4D, CSMD1, CDH13, ROBO2, RBFOX1, PTPRD, NPAS3, PDE1C, SEMA5A, and CTNNA2) mapped by these SNPs were shared across populations. Ryanodine receptor 2 (RYR2, a statin response-related gene) showed the strongest association in European (p value = 2.55 × 10−7) and was replicated in African (2.57 × 10−4) and Hispanic (1.18 × 10−3) Americans. Imputation analyses based on the 1000 Genomes Project uncovered additional RYR2 variants associated with asthma. Network and functional ontology analyses revealed that RYR2 is an integral part of dermatological or allergic disorder biological networks, specifically in the functional classes involving inflammatory, eosinophilic, and respiratory diseases.ConclusionOur rank-based genome-wide analysis revealed for the first time an association of RYR2 variants with asthma and replicated previously discovered PDE4D asthma gene across human populations. The replication of top-ranked asthma genes across populations suggests that such loci are less likely to be false positives and could indicate true associations. Variants that are associated with asthma across populations could be used to identify individuals who are at high risk for asthma regardless of genetic ancestry.


Proceedings of the 2010 ACM workshop on Cognitive radio networks | 2010

Spectrum occupancy validation and modeling using real-time measurements

Chittabrata Ghosh; Sumit Roy; Marepalli B. Rao; Dharma P. Agrawal

Existing research have considered Beta distribution in modeling channel occupancy of primary users in a licensed spectrum. This paper is the first initiative in validating this basic assumption in the cognitive radio paradigm using real-time measurements performed in Aachen, Germany on the 1500 MHz spectrum centered at 770 MHz. The Kolmogorov-Smirnov test is applied as a validation approach. The result of this test conforms to the validity of the Beta distribution modeling of spectrum occupancy. With this channel occupancy model, we have extended our research in modeling spectrum availability by proposing a new Poisson-normal approximation method. Further, we characterize available channels in a spectrum into five different types based on occupancy of its two adjacent channels. The probabilistic modeling of each of these types is determined using recurrence relations. Simulation results show that channel type classification and their modeling facilitate preferable selection of one section compared to another section over an operating spectrum.


Biology of Blood and Marrow Transplantation | 2015

Experience with Alemtuzumab, Fludarabine, and Melphalan Reduced-Intensity Conditioning Hematopoietic Cell Transplantation in Patients with Nonmalignant Diseases Reveals Good Outcomes and That the Risk of Mixed Chimerism Depends on Underlying Disease, Stem Cell Source, and Alemtuzumab Regimen

Rebecca A. Marsh; Marepalli B. Rao; Aharon Gefen; Denise Bellman; Parinda A. Mehta; Pooja Khandelwal; Sharat Chandra; Sonata Jodele; Kasiani C. Myers; Michael Grimley; Christopher E. Dandoy; Javier El-Bietar; Ashish Kumar; Tom Leemhuis; Kejian Zhang; Jack Bleesing; Michael B. Jordan; Alexandra H. Filipovich; Stella M. Davies

Alemtuzumab, fludarabine, and melphalan reduced-intensity conditioning (RIC) regimens are increasingly used for the hematopoietic cell transplantation (HCT) of pediatric and young adult patients with nonmalignant diseases. Early experience suggests that these regimens are associated with good survival but a high incidence of mixed chimerism, which we have previously shown to be influenced by the alemtuzumab schedule. We hypothesized that the underlying diagnosis and donor graft source would also affect the development of mixed chimerism and that the majority of patients would survive RIC HCT without graft loss. To examine this, we conducted a retrospective study of 206 patients with metabolic diseases, non-Fanconi anemia marrow failure disorders, and primary immune deficiencies who underwent 210 consecutive RIC HCT procedures at Cincinnati Childrens Hospital. Ninety-seven percent of the patients engrafted. Mixed donor and recipient chimerism developed in 46% of patients. Patients with marrow failure had a low risk of mixed chimerism (hazard ratio [HR], .208; 95% confidence interval [CI], .061 to .709; P = .012). The risk of mixed chimerism was high in patients who received a cord blood graft (HR, 3.122; 95% CI, 1.236 to 7.888; P = .016). As expected, patients who received a proximal or higher dose per kilogram of alemtuzumab schedule also experienced higher rates of mixed chimerism (all HR > 2, all P < .05). At the time of last follow-up (median, 654 days; range, 13 to 3337), over 75% of patients had greater than 90% whole blood donor chimerism. A second transplantation was performed in 5% of patients. Three-year survival without retransplantation was 84% (95% CI, 71% to 98%) for patients who underwent transplantation with an HLA-matched sibling donor. Survival without retransplantation was negatively affected by lack of a matched related donor, increasing age, and development of grades III and IV acute graft-versus-host disease. We conclude that alemtuzumab, fludarabine, and melphalan RIC HCT offers good results for many patients and that the risk of developing mixed chimerism is influenced by underlying diagnosis, graft source, and alemtuzumab dosing.


Journal of Pediatric Surgery | 2012

Pretreatment with anti-VEGF therapy may exacerbate inflammation in experimental acute colitis

Artur Chernoguz; Kelly Crawford; Abbey Vandersall; Marepalli B. Rao; Tara Willson; Lee A. Denson; Jason S. Frischer

AIM Our previous investigations of angiogenesis in inflammatory bowel disease showed that vascular endothelial growth factor (VEGF) blockade reduced colonic neovascularization and inflammation. We hypothesized that pretreatment with bevacizumab, a monoclonal anti-VEGF antibody, would attenuate the severity of angiogenesis and inflammation in a murine model of colitis. METHODS C57BL/6 mice were treated with intraperitoneal injections of bevacizumab (250 μg/dose) before induction of colitis with dextran sulfate sodium (DSS). The colons were examined at predetermined time points. Colonic inflammation and microvessel density were assessed microscopically. RESULTS All mice acutely developed melena and weight loss (18.8% ± 1.1% control vs 20.2% ± 1.1% treated, P = .37) and regained a similar weight percentage after the recovery (26.5% ± 4.0% vs 20.9% ± 4.4%, P = .37). Microvessel density acutely increased in both groups in response to DSS, with a trend toward inhibited angiogenesis in the treated group at the conclusion of the acute phase (194,100 ± 14,240 vs 149,400 ± 17,590 μm(2), P = .11). Bevacizumab-treated mice exhibited significantly increased inflammation after the acute phase (8.3 ± 0.8 vs 13.0 ± 2.0, P = .05), but were similar to control after the recovery (7.3 ± 1.5 vs 5.5 ± 1.0, P = .27). CONCLUSIONS Preemptive VEGF inhibition does not significantly attenuate angiogenesis and, in fact, worsens inflammation in a model of acute colitis. Preventive VEGF blockade may disrupt healing and exacerbate injury via alternative angiogenic or inflammatory pathways.

Collaboration


Dive into the Marepalli B. Rao's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Cynthia Gooch

University of Cincinnati

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Fong Ming Hooi

University of Cincinnati

View shared research outputs
Researchain Logo
Decentralizing Knowledge