Margit Egg
University of Innsbruck
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Margit Egg.
BMC Biology | 2011
Òscar Palacios; Ayelen Pagani; Sílvia Pérez-Rafael; Margit Egg; Martina Höckner; Anita Brandstätter; Mercè Capdevila; Sílvia Atrian; Reinhard Dallinger
BackgroundThe degree of metal binding specificity in metalloproteins such as metallothioneins (MTs) can be crucial for their functional accuracy. Unlike most other animal species, pulmonate molluscs possess homometallic MT isoforms loaded with Cu+ or Cd2+. They have, so far, been obtained as native metal-MT complexes from snail tissues, where they are involved in the metabolism of the metal ion species bound to the respective isoform. However, it has not as yet been discerned if their specific metal occupation is the result of a rigid control of metal availability, or isoform expression programming in the hosting tissues or of structural differences of the respective peptides determining the coordinative options for the different metal ions. In this study, the Roman snail (Helix pomatia) Cu-loaded and Cd-loaded isoforms (HpCuMT and HpCdMT) were used as model molecules in order to elucidate the biochemical and evolutionary mechanisms permitting pulmonate MTs to achieve specificity for their cognate metal ion.ResultsHpCuMT and HpCdMT were recombinantly synthesized in the presence of Cd2+, Zn2+ or Cu2+ and corresponding metal complexes analysed by electrospray mass spectrometry and circular dichroism (CD) and ultra violet-visible (UV-Vis) spectrophotometry. Both MT isoforms were only able to form unique, homometallic and stable complexes (Cd6-HpCdMT and Cu12-HpCuMT) with their cognate metal ions. Yeast complementation assays demonstrated that the two isoforms assumed metal-specific functions, in agreement with their binding preferences, in heterologous eukaryotic environments. In the snail organism, the functional metal specificity of HpCdMT and HpCuMT was contributed by metal-specific transcription programming and cell-specific expression. Sequence elucidation and phylogenetic analysis of MT isoforms from a number of snail species revealed that they possess an unspecific and two metal-specific MT isoforms, whose metal specificity was achieved exclusively by evolutionary modulation of non-cysteine amino acid positions.ConclusionThe Roman snail HpCdMT and HpCuMT isoforms can thus be regarded as prototypes of isoform families that evolved genuine metal-specificity within pulmonate molluscs. Diversification into these isoforms may have been initiated by gene duplication, followed by speciation and selection towards opposite needs for protecting copper-dominated metabolic pathways from nonessential cadmium. The mechanisms enabling these proteins to be metal-specific could also be relevant for other metalloproteins.
Aquatic Toxicology | 1997
Reinhard Dallinger; Margit Egg; Günther Köck; Rudolf Hofer
Cadmium, copper and zinc concentrations were measured in water and organs (gill, liver and kidney) of Arctic char (Salvelinus alpinus) from four alpine lakes in Tyrol, Austria. In comparison with control fish, concentrations of metals, especially of cadmium, were elevated in tissues of fish from low-alkalinity lakes. In contrast, low metal levels were detected in water of the alpine lakes, suggesting that the high net accumulation of metals in fish tissues might have been caused by increased availability of these metals under conditions of low alkalinity. After chromatographic purification and Reversed-Phase HPLC of tissue supernatants from lake fish, several metallothionein (MT) peaks were identified in liver and kidney. In both organs MT accounted for the sequestration of virtually all the cadmium present in the tissues, and of considerable proportions of copper and zinc. However, there were conspicuous organ-specific differences in the metal patterns of the isolated MTs. Whereas liver MT of lake fish was dominated by copper and zinc despite high amounts of cadmium in the tissue, kidney MT showed a reversed pattern with cadmium predominating at the expense of copper and zinc. At slightly elevated cadmium concentrations in the liver, sequestration of this metal was achieved by displacement of zinc from MT binding sites, whereas at higher concentrations more MT was synthesized to bind excess amounts of the metal. The concentration of (Cd,Zn)-MT in the liver was inversely correlated with lake alkalinity. Finally, significant positive correlations were observed between the age of Arctic char and hepatic concentrations of cadmium and (Cd,Zn)-MT.
Chronobiology International | 2013
Margit Egg; Louise Köblitz; Jun Hirayama; Thorsten Schwerte; Clemens Folterbauer; Antje Kurz; Birgit Fiechtner; Markus Möst; Willi Salvenmoser; Paolo Sassone-Corsi; Bernd Pelster
The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions. Thus, long-term hypoxic incubation of larvae resulted in a dampening of the diurnal oscillation amplitude of the period1 gene expression starting only several hours after start of the hypoxic incubation. A significant decrease in the amplitude of the period1 circadian oscillation in response to hypoxia and in response to the hypoxic mimic CoCl2 was also observed using a zebrafish luciferase reporter cell line in constant darkness. In addition, activity measurements of zebrafish larvae using an infrared-sensitive camera demonstrated the loss of their usual circadian activity pattern under hypoxic conditions. To explore the functional basis of the observed cross-talk between both signaling pathways ChIP assays were performed. Increasing with the duration of hypoxia, a nearly 4-fold occupancy of hypoxia-inducible factor 1 (Hif-1α) at two specific E-box binding sites located in the period1 gene control region was shown, demonstrating therewith the transcriptional co-regulation of the core clock gene by the major transcription factor of the hypoxic pathway. On the other hand, circadian transgenic zebrafish cells, simulating a repressed or an overstimulated circadian clock, modified gene transcription levels of oxygen-regulated genes such as erythropoietin and vascular endothelial growth factor 165 and altered the hypoxia-induced increase in Hif-1α protein concentration. In addition, the amount of Hif-1α protein accumulated during the hypoxic response was shown to depend on the time of the day, with one maximum during the light phase and a second one during the dark phase. The direct binding of Hif-1α to the period1 gene control region provides a mechanistic explanation for the repeatedly observed interaction between hypoxia and the circadian clock. The cross-talk between both major signaling pathways was shown for the first time to be bidirectional and may provide the advantage of orchestrating a broad range of genes and metabolic pathways to cope with altered oxygen availabilities. (Author correspondence: [email protected])
Physiological Genomics | 2011
Renate Kopp; Louise Köblitz; Margit Egg; Bernd Pelster
Exercise as well as hypoxia cause an increase in angiogenesis, changes in mitochondrial density and alterations in metabolism, but it is still under debate whether the hypoxia inducible factor (HIF) is active during both situations. In this study gene expression analysis of zebrafish larvae that were raised under normoxic, hypoxic, or training conditions were compared, using microarray analysis, quantitative real-time PCR and protein data. Although HIF expression is posttranslationally regulated, mRNA expression levels of all three isoforms (HIF-1α, HIF-2α, and HIF-3α) differed in each of the experimental groups, but the changes observed in hypoxic animals were much smaller than in trained larvae. Prominent changes were seen for Hif-2α expression, which significantly increased after the first day of exercise and then decreased down to values significantly below control values. HIF-3α mRNA expression in turn increased significantly, and at the end of the training period (9-15 days postfertilization) it was elevated three times. At the protein level a transient increase in HIF-1α was observed in hypoxic larvae, whereas in the exercise group the amount of HIF-1α protein even decreased below the level of control animals. The analyzed transcriptome was more affected in hypoxic zebrafish larvae, and hardly any genes were similarly altered by both treatments. These results clearly showed that HIF proteins played different roles in trained and hypoxic zebrafish larvae and that the exercise-induced transition to a more aerobic phenotype was not achieved by persistent activation of the hypoxic signaling pathway.
Molecular Ecology | 2009
Margit Egg; Martina Höckner; Anita Brandstätter; D. Schuler; Reinhard Dallinger
Metallothioneins (MTs) are a family of multifunctional proteins involved, among others, in stress response. The Cadmium (Cd)‐MT gene of the Roman snail (Helix pomatia), for example, encodes for a protein induced upon cadmium exposure. While our previous studies have demonstrated that the expressed Cd‐MT isoform of Roman snails assists detoxification of cadmium, the present work focuses on the potential plasticity of this gene in response to a variety of environmental stressors playing a crucial role in the specific ecological niche of H. pomatia. Our hypothesis is based on a bioinformatic approach involving gene sequencing, structural and in silico analysis of transcription factor binding sites (TFBs), and a comparison of these features with other MT genes. Our results show that the Roman snails Cd‐MT gene not only is the largest known MT gene, but also contains — apart from the regulatory promoter region — several intronic repeat cassettes of putative TFBs suggested to be involved in environmental stress response, immune competence, and regulation of gene expression. Moreover, intronic scaffold/matrix attachment regions (S/MARs) and stress‐induced duplex destabilization sites confer a high potential for epigenetic gene regulation. This suggested regulatory plasticity is also supported by physiological data showing that Cd‐MT in Roman snails can be induced differentially not only after cadmium exposure, but also in response to nonmetallic environmental stressors. It is concluded that structural analysis combined with bioinformatic screening may constitute valuable tools for predicting the potential for plasticity and niche‐specific adaptation of stress‐responsive genes in populations living under rapidly changing environmental conditions.
The Journal of Experimental Biology | 2011
Adolf Michael Sandbichler; Margit Egg; Thorsten Schwerte; Bernd Pelster
SUMMARY Permeability of rainbow trout gill pavement cells cultured on permeable supports (single seeded inserts) changes upon exposure to freshwater or treatment with cortisol. The molecular components of this change are largely unknown, but tight junctions that regulate the paracellular pathway are prime candidates in this adaptational process. Using differential display polymerase chain reaction we found a set of 17 differentially regulated genes in trout pavement cells that had been exposed to freshwater apically for 24 h. Five genes were related to the cell–cell contact. One of these genes was isolated and identified as encoding claudin 28b, an integral component of the tight junction. Immunohistochemical reactivity to claudin 28b protein was concentrated in a circumferential ring colocalized to the cortical F-actin ring. To study the contribution of this isoform to changes in transepithelial resistance and Phenol Red diffusion under apical hypo-or hyperosmotic exposure we quantified the fluorescence signal of this claudin isoform in immunohistochemical stainings together with the fluorescence of phalloidin-probed F-actin. Upon hypo-osmotic stress claudin 28b fluorescence and epithelial tightness remained stable. Under hyperosmotic stress, the presence of claudin 28b at the junction significantly decreased, and epithelial tightness was severely reduced. Cortical F-actin fluorescence increased upon hypo-osmotic stress, whereas hyperosmotic stress led to a separation of cortical F-actin rings and the number of apical crypt-like pores increased. Addition of cortisol to the basolateral medium attenuated cortical F-actin separation and pore formation during hyperosmotic stress and reduced claudin 28b in junctions except after recovery of cells from exposure to freshwater. Our results showed that short-term salinity stress response in cultured trout gill cells was dependent on a dynamic remodeling of tight junctions, which involves claudin 28b and the supporting F-actin ring.
Physiological Genomics | 2010
Renate Kopp; Thorsten Schwerte; Margit Egg; Adolf Michael Sandbichler; Bernhard Egger; Bernd Pelster
In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.
PLOS ONE | 2014
Renate Kopp; Ines Bauer; Anil Ramalingam; Margit Egg; Thorsten Schwerte
Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre) are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α) expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf), when the first differences in survival rate occurred (7 dpf) and when survival rate plateaued (15 dpf). Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a short period of development and starting hypoxia before or after this phase reduced survival, particularly in bre animals. Thus, the physiological plasticity, which enables zebrafish larvae to benefit from a hypoxia, occurs only within a narrow developmental window.
Physiological and Biochemical Zoology | 2015
Bernd Pelster; Margit Egg
In zebrafish, as in most vertebrates, three different isoforms of the hypoxia-inducible transcription factor, Hif-1α, Hif-2α, and Hif-3α, have been identified. The expression data of genes encoding these three proteins, as analyzed so far, show distinct expression patterns for all three isoforms during early development, under hypoxic conditions, and during exercise, suggesting differential roles for all three proteins under these different conditions. While isoform-specific functions for Hif-1α and Hif-2α have been identified in recent years, the role of Hif-3α remains somewhat elusive. Several studies mostly using mammalian cells or tissues discussed Hif-3α as a competitive inhibitor of Hif-1α and Hif-2α. In zebrafish, the expression changes for Hif-1α and Hif-3α observed during development and under environmental stress conditions do not support this hypothesis, and recent studies indicate that Hif-3α is also able to directly control transcriptional activity of certain genes. The Hif signaling pathway is tightly connected to cell circuitries such as glucose and lipid metabolism, and only very recently a further linkage to the circadian clock has been described. In this context a detailed analysis of the mRNA concentrations of hif-1α, hif-2α, and hif-3α also revealed a circadian expression pattern for hif-3α mRNA under normoxic conditions in zebrafish larvae. In addition, accumulation of Hif-1α protein during short-term hypoxia was found to depend on the time within the daily light and dark cycle at which hypoxia was encountered, suggesting that the hypoxia signaling pathway may be regulated by the circadian clock. This is supported by the fact that some of the downstream genes of the Hif signaling pathway, namely, erythropoietin and vascular endothelial growth factor, are known to be clock controlled as well. Furthermore, in developing zebrafish, the disruption of the circadian rhythm was shown to result in a diminished hypoxic response with a modified life cycle of erythrocytes and an altered patterning of the vascular bed, leading to even higher mortality rates of chronodisrupted animals. Hif protein, in turn, is known to affect the circadian clock pathway in zebrafish. Previously, we demonstrated that Hif-1α directly binds to defined E-boxes of the period 1 gene, leading to a sustained dampening of its oscillation amplitude. Here we show that Hif-1α also binds to the promoter of the period 2 gene, indicating that multiple connections between the Hif signaling pathway and the circadian clock exist. The redundancy of the coupling between both pathways might be evidence for the coevolution of both circuits after the great oxygenation event about 2.5 billion years ago. Coupling the circadian clock and the hypoxic signaling pathway may have conferred selective advantages by facilitating a coordinated response of cells and organisms to alternating day-night cycles and concomitant variable food availabilities in the face of varying oxygen supply.
Chronobiology International | 2014
Margit Egg; Monika Paulitsch; Yvonne Ennemoser; Andrea Wüstenhagen; Thorsten Schwerte; Adolf Michael Sandbichler; Birgit Fiechtner; Louise Köblitz; Caroline Prem; Bernd Pelster
The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in pathogenesis. The bi-directionality of the interaction between both pathways has been shown on physiological and only recently also on molecular level. But the consequences of a disturbed circadian rhythm for the hypoxic response and the cardiovascular system have never been addressed in any organism. Here we show that the hypoxic response of animals subjected to chronodisruption is reduced by approximately 30%, as reflected by decreased expression levels of hypoxia inducible factor 1 and its down-stream target genes erythropoietin, responsible for the generation of red blood cells (RBC) and vascular endothelial growth factor, which is essential for proper vascularization. Beside malformations of their vascular beds, chronodisrupted animals surprisingly revealed elevated numbers of senescent erythrocytes under normoxic conditions, due to a reduced clearance rate via apoptosis. Over-aged erythrocytes in turn are characterized by decreased oxygen transport capacities and an increased tendency for aggregation, explaining the higher mortality of chronodisrupted animals observed in our study. The present study shows for the first time that chronodisruption strongly interferes with the hypoxic signalling cascade, increasing the cardiovascular risk in zebrafish due to elevated proportions of senescent erythrocytes. The results might shed new light on the etiology of the increased cardiovascular risk observed among shiftworkers.