Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Renate Kopp is active.

Publication


Featured researches published by Renate Kopp.


The Journal of Experimental Biology | 2005

Cardiac performance in the zebrafish breakdance mutant.

Renate Kopp; Thorsten Schwerte; Bernd Pelster

SUMMARY In the Tübingen screen a breakdance mutant of zebrafish (bre) was described as an arrhythmia, in which the ventricle beats only with every second atrial contraction (2:1 rhythm). Surprisingly, a careful analysis of the effect of the breakdance mutation on cardiac performance of the zebrafish during development between 3 d.p.f. and 14 d.p.f revealed that homozygous bre mutants did not always show the 2:1 rhythm. Cardiac activity was continuously recorded for a period of 20 min in each larva, and during this period we observed that heart rate randomly switched between the 2:1 rhythm and a 1:1 rhythm. Furthermore, at 28°C and at 31°C the expression of the 2:1 rhythm decreased with development. At 31°C this was in part due to a significantly reduced survival rate of mutants beyond 4 d.p.f. Besides development, temperature had a marked effect on the expression of the 2:1 rhythm, and during the first days of development the expression of the 2:1 rhythm was significantly higher at elevated incubation temperatures. By contrast, in the 2:1 beating heart ventricular contraction rate was about 80 beats min-1 throughout development irrespective of the temperature, and even in the 1:1 rhythm mutants showed a significant bradycardia at all three temperatures (25°C, 28°C or 31°C). Compared to wild-type animals, cardiac output was significantly lower in bre mutants. Pressure traces recorded in the ventricle of mutants revealed a prolonged relaxation phase, indicating that the second pacemaker current could not be conveyed to the ventricle (AV-block). This phenotype is comparable to the human Long QT Syndrome, an arrhythmia caused by a modification of an ion channel involved in cardiac repolarization. The bradycardia and the modified temperature sensitivity of heart rate suggested that the activity of the pacemaker cells was also affected by this mutation.


Physiological Genomics | 2011

HIF signaling and overall gene expression changes during hypoxia and prolonged exercise differ considerably

Renate Kopp; Louise Köblitz; Margit Egg; Bernd Pelster

Exercise as well as hypoxia cause an increase in angiogenesis, changes in mitochondrial density and alterations in metabolism, but it is still under debate whether the hypoxia inducible factor (HIF) is active during both situations. In this study gene expression analysis of zebrafish larvae that were raised under normoxic, hypoxic, or training conditions were compared, using microarray analysis, quantitative real-time PCR and protein data. Although HIF expression is posttranslationally regulated, mRNA expression levels of all three isoforms (HIF-1α, HIF-2α, and HIF-3α) differed in each of the experimental groups, but the changes observed in hypoxic animals were much smaller than in trained larvae. Prominent changes were seen for Hif-2α expression, which significantly increased after the first day of exercise and then decreased down to values significantly below control values. HIF-3α mRNA expression in turn increased significantly, and at the end of the training period (9-15 days postfertilization) it was elevated three times. At the protein level a transient increase in HIF-1α was observed in hypoxic larvae, whereas in the exercise group the amount of HIF-1α protein even decreased below the level of control animals. The analyzed transcriptome was more affected in hypoxic zebrafish larvae, and hardly any genes were similarly altered by both treatments. These results clearly showed that HIF proteins played different roles in trained and hypoxic zebrafish larvae and that the exercise-induced transition to a more aerobic phenotype was not achieved by persistent activation of the hypoxic signaling pathway.


Physiological Genomics | 2010

Chronic reduction in cardiac output induces hypoxic signaling in larval zebrafish even at a time when convective oxygen transport is not required.

Renate Kopp; Thorsten Schwerte; Margit Egg; Adolf Michael Sandbichler; Bernhard Egger; Bernd Pelster

In the present study, the zebrafish breakdance mutant (bre) was used to assess the role of blood flow in development because it has been previously shown that bre larvae have a chronically reduced cardiac output as a result of ventricular contraction following only every second atrial contraction in addition to an atrial bradycardia. We confirmed a 50% reduction compared with control fish and further showed that blood flow in the caudal part of the dorsal aorta decreased by 80%. Associated with these reductions in blood flow were indications of developmental retardation in bre mutants, specifically delayed hatching, reduced cell proliferation, and a transiently decreased growth rate. Surprisingly, an increased red blood cell concentration and an earlier appearance of trunk vessels in bre larvae indicated some compensation to convective oxygen transport, although in previous studies it has been shown that zebrafish larvae at this stage obtain oxygen by bulk diffusion. In bre animals immunohistochemical analyses showed a significant increase in hypoxia inducible factor 1 (HIF)-α protein expression, comparable with wild-type larvae that were raised under hypoxic conditions. Accordingly, the expression of some hif downstream genes was affected. Furthermore, Affymetrix microarray analyses revealed a large number of genes that were differently expressed comparing control and bre larvae, and the number even increased with proceeding development. The results showed that a chronic reduction in blood flow generated hypoxic molecular signals despite partial compensation by increased oxygen carrying capacity and transiently slowed the overall development of zebrafish bre larvae.


PLOS ONE | 2014

Prolonged Hypoxia Increases Survival Even in Zebrafish (Danio rerio) Showing Cardiac Arrhythmia

Renate Kopp; Ines Bauer; Anil Ramalingam; Margit Egg; Thorsten Schwerte

Tolerance towards hypoxia is highly pronounced in zebrafish. In this study even beneficial effects of hypoxia, specifically enhanced survival of zebrafish larvae, could be demonstrated. This effect was actually more pronounced in breakdance mutants, which phenotypically show cardiac arrhythmia. Breakdance mutants (bre) are characterized by chronically reduced cardiac output. Despite an about 50% heart rate reduction, they become adults, but survival rate significantly drops to 40%. Normoxic bre animals demonstrate increased hypoxia inducible factor 1 a (Hif-1α) expression, which indicates an activated hypoxic signaling pathway. Consequently, cardiovascular acclimation, like cardiac hypertrophy and increased erythrocyte concentration, occurs. Thus, it was hypothesized, that under hypoxic conditions survival might be even more reduced. When bre mutants were exposed to hypoxic conditions, they surprisingly showed higher survival rates than under normoxic conditions and even reached wildtype values. In hypoxic wildtype zebrafish, survival yet exceeded normoxic control values. To specify physiological acclimation, cardiovascular and metabolic parameters were measured before hypoxia started (3 dpf), when the first differences in survival rate occurred (7 dpf) and when survival rate plateaued (15 dpf). Hypoxic animals expectedly demonstrated Hif-1α accumulation and consequently enhanced convective oxygen carrying capacity. Moreover, bre animals showed a significantly enhanced heart rate under hypoxic conditions, which reached normoxic wildtype values. This improvement in convective oxygen transport ensured a sufficient oxygen and nutrient supply and was also reflected in the significantly higher mitochondrial activity. The highly optimized energy metabolism observed in hypoxic zebrafish larvae might be decisive for periods of higher energy demand due to organ development, growth and increased activity. However, hypoxia increased survival only during a short period of development and starting hypoxia before or after this phase reduced survival, particularly in bre animals. Thus, the physiological plasticity, which enables zebrafish larvae to benefit from a hypoxia, occurs only within a narrow developmental window.


PLOS ONE | 2016

Physiological, Diurnal and Stress-Related Variability of Cadmium-Metallothionein Gene Expression in Land Snails

Veronika Pedrini-Martha; Michael Niederwanger; Renate Kopp; Raimund Schnegg; Reinhard Dallinger

The terrestrial Roman snail Helix pomatia has successfully adapted to strongly fluctuating conditions in its natural soil habitat. Part of the snail’s stress defense strategy is its ability to express Metallothioneins (MTs). These are multifunctional, cysteine-rich proteins that bind and inactivate transition metal ions (Cd2+, Zn2+, Cu+) with high affinity. In Helix pomatia a Cadmium (Cd)-selective, inducible Metallothionein Isoform (CdMT) is mainly involved in detoxification of this harmful metal. In addition, the snail CdMT has been shown to also respond to certain physiological stressors. The aim of the present study was to investigate the physiological and diurnal variability of CdMT gene expression in snails exposed to Cd and non-metallic stressors such as desiccation and oxygen depletion. CdMT gene expression was upregulated by Cd exposure and desiccation, whereas no significant impact on the expression of CdMT was measured due to oxygen depletion. Overall, Cd was clearly more effective as an inducer of the CdMT gene expression compared to the applied non-metallic stressors. In unexposed snails, diurnal rhythmicity of CdMT gene expression was observed with higher mRNA concentrations at night compared to daytime. This rhythmicity was severely disrupted in Cd-exposed snails which exhibited highest CdMT gene transcription rates in the morning. Apart from diurnal rhythmicity, feeding activity also had a strong impact on CdMT gene expression. Although underlying mechanisms are not completely understood, it is clear that factors increasing MT expression variability have to be considered when using MT mRNA quantification as a biomarker for environmental stressors.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2007

How does blood cell concentration modulate cardiovascular parameters in developing zebrafish (Danio rerio)

Renate Kopp; Bernd Pelster; Thorsten Schwerte


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Ontogenetic development of erythropoiesis can be studied non-invasively in GATA-1:DsRed transgenic zebrafish.

Nadeem Yaqoob; Markus Holotta; Caroline Prem; Renate Kopp; Thorsten Schwerte


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2012

Shedding light on the transcriptional regulation of metallothionein genes in pulmonate gastropods

Veronika Pedrini-Martha; Renate Kopp; Michael Niederwanger; Reinhard Dallinger


The FASEB Journal | 2009

Non-invasive characterization of red blood cell population under normoxic and hypoxic conditions in developing zebrafish (Danio rerio)

Thorsten Schwerte; Nadeem Yaqoob; Caroline Prem; Renate Kopp; Birgit Fiechtner


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2009

Clock genes establish a connection between heart performance and development

Renate Kopp; Bernd Pelster

Collaboration


Dive into the Renate Kopp's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Margit Egg

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge