Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Thorsten Schwerte is active.

Publication


Featured researches published by Thorsten Schwerte.


Blood | 2009

Zebrafish mutants in the von Hippel-Lindau tumor suppressor display a hypoxic response and recapitulate key aspects of Chuvash polycythemia

Ellen van Rooijen; Emile E. Voest; Ive Logister; Jeroen Korving; Thorsten Schwerte; Stefan Schulte-Merker; Rachel H. Giles; Fredericus J. M. van Eeden

We have generated 2 zebrafish lines carrying inactivating germline mutations in the von Hippel-Lindau (VHL) tumor suppressor gene ortholog vhl. Mutant embryos display a general systemic hypoxic response, including the up-regulation of hypoxia-induced genes by 1 day after fertilization and a severe hyperventilation and cardiophysiologic response. The vhl mutants develop polycythemia with concomitantly increased epo/epor mRNA levels and erythropoietin signaling. In situ hybridizations reveal global up-regulation of both red and white hematopoietic lineages. Hematopoietic tissues are highly proliferative, with enlarged populations of c-myb(+) hematopoietic stem cells and circulating erythroid precursors. Chemical activation of hypoxia-inducible factor signaling recapitulated aspects of the vhl(-/-) phenotype. Furthermore, microarray expression analysis confirms the hypoxic response and hematopoietic phenotype observed in vhl(-/-) embryos. We conclude that VHL participates in regulating hematopoiesis and erythroid differentiation. Injections with human VHLp30 and R200W mutant mRNA demonstrate functional conservation of VHL between mammals and zebrafish at the amino acid level, indicating that vhl mutants are a powerful new tool to study genotype-phenotype correlations in human disease. Zebrafish vhl mutants are the first congenital embryonic viable systemic vertebrate animal model for VHL, representing the most accurate model for VHL-associated polycythemia to date. They will contribute to our understanding of hypoxic signaling, hematopoiesis, and VHL-associated disease progression.


The Journal of Experimental Biology | 2004

Ontogeny of the gut motility control system in zebrafish Danio rerio embryos and larvae

Anna Holmberg; Thorsten Schwerte; Bernd Pelster; Susanne Holmgren

SUMMARY Using digital motion analysis, the ontogeny of the cholinergic, tachykinin and pituitary adenylate cyclase-activating polypeptide (PACAP) control systems was studied in zebrafish Danio rerio larvae, in vivo. For the first time we show that the regular propagating anterograde waves that occur in the zebrafish larval gut before and around the onset [at 5–6 days post fertilization (d.p.f.)] of feeding are modulated by acetylcholine or atropine, PACAP and NKA (neurokinin A). At 3 d.p.f., when no spontaneous motility has developed, application of acetylcholine did not affect the gut. However, at 4 d.p.f., acetylcholine increased and atropine reduced the frequency of propagating anterograde waves. At 5 d.p.f., NKA increased and PACAP reduced the wave frequency. This suggests that both excitatory and inhibitory pathways develop at an early stage in the gut, independent of exogenous feeding. Immunohistochemistry established the presence of gut neurons expressing PACAP and NKA in the proximal part of the developing gut from the first stage investigated (2 d.p.f.) and before regular motility was observed. 1 d.p.f. (PACAP) or 2 d.p.f. (NKA) stages later the whole gut was innervated. This supports physiological results that gut motility is under neuronal control during the period when regular motility patterns develop.


The Journal of Experimental Biology | 2003

Non-invasive imaging of blood cell concentration and blood distribution in zebrafish Danio rerio incubated in hypoxic conditions in vivo.

Thorsten Schwerte; Dietmar Überbacher; Bernd Pelster

SUMMARY This is the first study to use a combination of digital imaging techniques and vital video microscopy to study hypoxia-induced changes in blood cell concentration, angiogenesis and blood redistribution in entire animals. Zebrafish Danio rerio, which are known to be independent of convective oxygen transport until about 2 weeks post-fertilization, were raised under chronic hypoxia (PO2=8.7 kPa) starting at 1 day after fertilization (d.p.f.) until 15 d.p.f. In control animals, the concentration of red cells (i.e. the number of red cells per nl blood) remained constant until 7 d.p.f., and than decreased by approximately 70% until 15 d.p.f. In hypoxic animals, however, the concentration of red cells remained significantly elevated compared to control animals at 12 and 15 d.p.f. Assuming that the hemoglobin content of the red cells is similar, hypoxic animals have a higher oxygen carrying capacity in their blood. Red cell distribution within the various parts of the circulatory system, taken as an indicator for blood distribution, revealed a significant modification in the number of blood cells perfusing the organs in hypoxic animals. At 12 d.p.f., gut perfusion was reduced by almost 50% in hypoxic animals, while perfusion of the segmental muscle tissue was increased to 350% of control values. No significant changes in brain perfusion were observed under these conditions. At 15 d.p.f., the reduction in gut perfusion was abolished, although muscle perfusion was still significantly elevated. At this time, growth of hypoxic animals was less compared to control animals, revealing that hypoxia had become deleterious for further development. The vascular bed of various organs was not obviously different in hypoxic animals compared to normoxic animals.


The Journal of Experimental Biology | 2006

Development of the sympatho-vagal balance in the cardiovascular system in zebrafish (Danio rerio) characterized by power spectrum and classical signal analysis.

Thorsten Schwerte; Caroline Prem; Anita Mairösl; Bernd Pelster

SUMMARY The development of sympatho-vagal control of cardiac activity was analyzed in zebrafish (Danio rerio) larvae from 2 to 15 days post fertilization (d.p.f.) by pharmacological studies as well as by assessing short term heart rate variability. Changes in heart rate in response to cholinergic and adrenergic receptor stimulation or inhibition were investigated using in situ preparations and digital video-microscopic techniques. The data revealed that the heart responded to adrenergic stimulation starting at 4 d.p.f. and to cholinergic stimulation starting at 5 d.p.f. Atropine application resulted in an increase in heart rate beyond 12 d.p.f., while the inhibitory effect of cholinergic stimulation ceased at this time of development. Adrenergic inhibition (propranolol) reduced heart rate for the first time at 5 d.p.f., but the reduction was only very small (3.8%). Between 5 and 12 d.p.f. propranolol application always resulted in a minor reduction in heart rate, but because the effect was so small it was not always significant. Because the presence of an adrenergic or cholinergic tone may influence the stability of heart rate, we analyzed short-term heart rate variability (HRV). The frequency band width of heart rate variability revealed that HRV increased between 4 d.p.f. and 15 d.p.f. From 13 to 15 d.p.f. atropine reduced the frequency band width of HRV, whereas the combination of atropine and propranolol effectively reduced the frequency band width between 11 and 15 d.p.f. Classical power spectrum analysis using electrocardiograms is not possible in tiny zebrafish larvae and juveniles. It was therefore performed using optical methods, recording cardiac movement and cardiotachograms calculated from these measurements. Whereas heart movements contained frequency components characterizing HRV, the cardiotachogram did not show typical frequency spectra as known from other species.


The Journal of Experimental Biology | 2005

Cardiac performance in the zebrafish breakdance mutant.

Renate Kopp; Thorsten Schwerte; Bernd Pelster

SUMMARY In the Tübingen screen a breakdance mutant of zebrafish (bre) was described as an arrhythmia, in which the ventricle beats only with every second atrial contraction (2:1 rhythm). Surprisingly, a careful analysis of the effect of the breakdance mutation on cardiac performance of the zebrafish during development between 3 d.p.f. and 14 d.p.f revealed that homozygous bre mutants did not always show the 2:1 rhythm. Cardiac activity was continuously recorded for a period of 20 min in each larva, and during this period we observed that heart rate randomly switched between the 2:1 rhythm and a 1:1 rhythm. Furthermore, at 28°C and at 31°C the expression of the 2:1 rhythm decreased with development. At 31°C this was in part due to a significantly reduced survival rate of mutants beyond 4 d.p.f. Besides development, temperature had a marked effect on the expression of the 2:1 rhythm, and during the first days of development the expression of the 2:1 rhythm was significantly higher at elevated incubation temperatures. By contrast, in the 2:1 beating heart ventricular contraction rate was about 80 beats min-1 throughout development irrespective of the temperature, and even in the 1:1 rhythm mutants showed a significant bradycardia at all three temperatures (25°C, 28°C or 31°C). Compared to wild-type animals, cardiac output was significantly lower in bre mutants. Pressure traces recorded in the ventricle of mutants revealed a prolonged relaxation phase, indicating that the second pacemaker current could not be conveyed to the ventricle (AV-block). This phenotype is comparable to the human Long QT Syndrome, an arrhythmia caused by a modification of an ion channel involved in cardiac repolarization. The bradycardia and the modified temperature sensitivity of heart rate suggested that the activity of the pacemaker cells was also affected by this mutation.


Comparative Biochemistry and Physiology A-molecular & Integrative Physiology | 2003

Understanding cardiovascular physiology in zebrafish and Xenopus larvae: the use of microtechniques

Thorsten Schwerte; Regina Fritsche

Zebrafish and Xenopus, genetically accessible vertebrates with an externally developing, optically clear embryo, are ideally suited for in vivo functional dissection of the embryonic development of the circulatory system. Physiological characterizations of the cardiovascular system are still imperative for a more complete understanding of the connections between genetic/epigenetic factors and cardiovascular development. Here, we review experimental tools and methods that have been developed to measure numerous cardiovascular parameters in these millimetre-sized animals.


Chronobiology International | 2013

Linking Oxygen to Time: The Bidirectional Interaction Between the Hypoxic Signaling Pathway and the Circadian Clock

Margit Egg; Louise Köblitz; Jun Hirayama; Thorsten Schwerte; Clemens Folterbauer; Antje Kurz; Birgit Fiechtner; Markus Möst; Willi Salvenmoser; Paolo Sassone-Corsi; Bernd Pelster

The circadian clock and the hypoxic signaling pathway play critical roles in physiological homeostasis as well as in tumorgenesis. Interactions between both pathways have repeatedly been reported for mammals during the last decade, the molecular basis, though, has not been identified so far. Expression levels of oxygen-regulated and circadian clock genes in zebrafish larvae (Danio rerio) and zebrafish cell lines were significantly altered under hypoxic conditions. Thus, long-term hypoxic incubation of larvae resulted in a dampening of the diurnal oscillation amplitude of the period1 gene expression starting only several hours after start of the hypoxic incubation. A significant decrease in the amplitude of the period1 circadian oscillation in response to hypoxia and in response to the hypoxic mimic CoCl2 was also observed using a zebrafish luciferase reporter cell line in constant darkness. In addition, activity measurements of zebrafish larvae using an infrared-sensitive camera demonstrated the loss of their usual circadian activity pattern under hypoxic conditions. To explore the functional basis of the observed cross-talk between both signaling pathways ChIP assays were performed. Increasing with the duration of hypoxia, a nearly 4-fold occupancy of hypoxia-inducible factor 1 (Hif-1α) at two specific E-box binding sites located in the period1 gene control region was shown, demonstrating therewith the transcriptional co-regulation of the core clock gene by the major transcription factor of the hypoxic pathway. On the other hand, circadian transgenic zebrafish cells, simulating a repressed or an overstimulated circadian clock, modified gene transcription levels of oxygen-regulated genes such as erythropoietin and vascular endothelial growth factor 165 and altered the hypoxia-induced increase in Hif-1α protein concentration. In addition, the amount of Hif-1α protein accumulated during the hypoxic response was shown to depend on the time of the day, with one maximum during the light phase and a second one during the dark phase. The direct binding of Hif-1α to the period1 gene control region provides a mechanistic explanation for the repeatedly observed interaction between hypoxia and the circadian clock. The cross-talk between both major signaling pathways was shown for the first time to be bidirectional and may provide the advantage of orchestrating a broad range of genes and metabolic pathways to cope with altered oxygen availabilities. (Author correspondence: [email protected])


Developmental Biology | 2012

The Popeye domain containing 2 (popdc2) gene in zebrafish is required for heart and skeletal muscle development

Bettina C. Kirchmaier; Kar Lai Poon; Thorsten Schwerte; Jan Huisken; Christoph Winkler; Didier Y. R. Stainier; Thomas Brand

The Popeye domain containing (Popdc) genes encode a family of transmembrane proteins with an evolutionary conserved Popeye domain. These genes are abundantly expressed in striated muscle tissue, however their function is not well understood. In this study we have investigated the role of the popdc2 gene in zebrafish. Popdc2 transcripts were detected in the embryonic myocardium and transiently in the craniofacial and tail musculature. Morpholino oligonucleotide-mediated knockdown of popdc2 resulted in aberrant development of skeletal muscle and heart. Muscle segments in the trunk were irregularly shaped and craniofacial muscles were severely reduced or even missing. In the heart, pericardial edema was prevalent in the morphants and heart chambers were elongated and looping was abnormal. These pathologies in muscle and heart were alleviated after reducing the morpholino concentration. However the heart still was abnormal displaying cardiac arrhythmia at later stages of development. Optical recordings of cardiac contractility revealed irregular ventricular contractions with a 2:1, or 3:1 atrial/ventricular conduction ratio, which caused a significant reduction in heart frequency. Recordings of calcium transients with high spatiotemporal resolution using a transgenic calcium indicator line (Tg(cmlc2:gCaMP)(s878)) and SPIM microscopy confirmed the presence of a severe arrhythmia phenotype. Our results identify popdc2 as a gene important for striated muscle differentiation and cardiac morphogenesis. In addition it is required for the development of the cardiac conduction system.


The Journal of Experimental Biology | 2011

In vivo and in vitro assessment of cardiac β-adrenergic receptors in larval zebrafish ( Danio rerio )

Shelby L. Steele; Xiaodi Yang; Mélanie Debiais-Thibaud; Thorsten Schwerte; Bernd Pelster; Marc Ekker; Mario Tiberi; Steve F. Perry

SUMMARY β-Adrenergic receptors (βARs) are crucial for maintaining the rate and force of cardiac muscle contraction in vertebrates. Zebrafish (Danio rerio) have one β1AR gene and two β2AR genes (β2aAR and β2bAR). We examined the roles of these receptors in larval zebrafish in vivo by assessing the impact of translational gene knockdown on cardiac function. Zebrafish larvae lacking β1AR expression by morpholino knockdown displayed lower heart rates than control fish, whereas larvae deficient in both β2aAR and β2bAR expression exhibited significantly higher heart rates than controls. These results suggested a potential inhibitory role for one or both β2AR genes. By using cultured HEK293 cells transfected with zebrafish βARs, we demonstrated that stimulation with adrenaline or procaterol (a β2AR agonist) resulted in an increase in intracellular cAMP levels in cells expressing any of the three zebrafish βARs. In comparison with its human βAR counterpart, zebrafish β2aAR expressed in HEK293 cells appeared to exhibit a unique binding affinity profile for adrenergic ligands. Specifically, zebrafish β2aAR had a high binding affinity for phenylephrine, a classical α-adrenergic receptor agonist. The zebrafish receptors also had distinct ligand binding affinities for adrenergic agonists when compared with human βARs in culture, with zebrafish β2aAR being distinct from human β2AR and zebrafish β2bAR. Overall, this study provides insight into the function and evolution of both fish and mammalian β-adrenergic receptors.


The Journal of Experimental Biology | 2005

The influence of environmental PO2 on hemoglobin oxygen saturation in developing zebrafish Danio rerio

Sandra Grillitsch; Nikolaus Medgyesy; Thorsten Schwerte; Bernd Pelster

SUMMARY Several studies suggest that during early larval development of lower vertebrates convective blood flow is not essential to supply oxygen to the tissues, but information about the oxygenation status of larvae during the time of cutaneous respiration is still missing. If convective oxygen transport contributes to the oxygen supply to tissues, venous blood in the central circulatory system should be partly deoxygenated, and hyperoxia should increase the oxygen saturation of the hemoglobin. To analyze the changes in hemoglobin oxygen saturation induced by hyperoxic incubation, zebrafish larvae were incubated in a tiny chamber between polytetrafluoroethylene membranes (Teflon), so that the oxygen supply could be rapidly modified. Hemoglobin oxygen saturation was measured in vivo by combining video imaging techniques with a spectrophotometrical analysis of hemoglobin light absorption at specific wavelengths for maximal absorption of oxygenated and deoxygenated blood (413 nm and 431 nm, respectively) under normoxic conditions and after a 10 min period of hyperoxia (PO2=100 kPa), assuming that at a PO2 of 100 kPa the hemoglobin is fully saturated. The results demonstrated that red blood cell oxygenation of zebrafish larvae at 4 days post fertilization (d.p.f.), 5 d.p.f. and 12 d.p.f. could be increased by hyperoxia. The data suggest that at the time of yolk sac degradation (i.e. 4 d.p.f. and 5 d.p.f.), when the total surface area of the animal is reduced, bulk diffusion of oxygen may not be sufficient to prevent a partial deoxygenation of the hemoglobin. The decrease in hemoglobin oxygenation observed at 12 d.p.f. confirms earlier studies indicating that at 12–14 d.p.f., convective oxygen transport becomes necessary to ensure oxygen supply to the growing tissues.

Collaboration


Dive into the Thorsten Schwerte's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Renate Kopp

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar

Margit Egg

University of Innsbruck

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Thomas Brand

National Institutes of Health

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christoph Winkler

National University of Singapore

View shared research outputs
Researchain Logo
Decentralizing Knowledge