Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Bitner-Glindzicz is active.

Publication


Featured researches published by Maria Bitner-Glindzicz.


Nature Genetics | 1997

A human homologue of the Drosophila eyes absent gene underlies branchio-oto-renal (BOR) syndrome and identifies a novel gene family.

Sonia Abdelhak; Vasiliki Kalatzis; Roland Heilig; Sylvie Compain; Delphine Samson; Christophe Vincent; Dominique Weil; Corinne Cruaud; Iman Sahly; Michel Leibovici; Maria Bitner-Glindzicz; Mary Francis; Didier Lacombe; Jacqueline Vigneron; Robert Charachon; Katia Boven; Philippe Bedbeder; Nicole Van Regemorter; Jean Weissenbach; Christine Petit

A candidate gene for Branchio-Oto-Renal (BOR) syndrome was identified at chromosome 8q13.3 by positional cloning and shown to underlie the disease. This gene is a human homologue of the Drosophila eyes absent gene (eya), and was therefore called EYA1. A highly conserved 271-amino acid C-terminal region was also found in the products of two other human genes (EYA2 and EYA3), demonstrating the existence of a novel gene family. The expression pattern of the murine EYA1 orthologue, Eya1, suggests a role in the development of all components of the inner ear, from the emergence of the otic placode. In the developing kidney, the expression pattern is indicative of a role for Eya1 in the metanephric cells surrounding the ‘just-divided’ ureteric branches.


American Journal of Human Genetics | 2001

Usher Syndrome 1D and Nonsyndromic Autosomal Recessive Deafness DFNB12 Are Caused by Allelic Mutations of the Novel Cadherin-Like Gene CDH23

Julie M. Bork; Linda M. Peters; Saima Riazuddin; S. L. Bernstein; Zubair M. Ahmed; Seth L. Ness; Robert C. Polomeno; A. Ramesh; Melvin D. Schloss; C. R. Srikumari Srisailpathy; Sigrid Wayne; Susan Bellman; Dilip Desmukh; Zahoor Ahmed; Shaheen N. Khan; Vazken M. Der Kaloustian; X. Cindy Li; Anil K. Lalwani; Sheikh Riazuddin; Maria Bitner-Glindzicz; Walter E. Nance; Xue-Zhong Liu; Graeme Wistow; Richard J.H. Smith; Andrew J. Griffith; Edward R. Wilcox; Thomas B. Friedman; Robert J. Morell

Genes causing nonsyndromic autosomal recessive deafness (DFNB12) and deafness associated with retinitis pigmentosa and vestibular dysfunction (USH1D) were previously mapped to overlapping regions of chromosome 10q21-q22. Seven highly consanguineous families segregating nonsyndromic autosomal recessive deafness were analyzed to refine the DFNB12 locus. In a single family, a critical region was defined between D10S1694 and D10S1737, approximately 0.55 cM apart. Eighteen candidate genes in the region were sequenced. Mutations in a novel cadherin-like gene, CDH23, were found both in families with DFNB12 and in families with USH1D. Six missense mutations were found in five families with DFNB12, and two nonsense and two frameshift mutations were found in four families with USH1D. A northern blot analysis of CDH23 showed a 9.5-kb transcript expressed primarily in the retina. CDH23 is also expressed in the cochlea, as is demonstrated by polymerase chain reaction amplification from cochlear cDNA.


American Journal of Human Genetics | 2005

GJB2 Mutations and Degree of Hearing Loss: A Multicenter Study

Rikkert L. Snoeckx; P.L.M. Huygen; Delphine Feldmann; Sandrine Marlin; Françoise Denoyelle; Jaroslaw Waligora; Malgorzata Mueller-Malesinska; Agneszka Pollak; Rafał Płoski; Alessandra Murgia; Eva Orzan; Pierangela Castorina; Umberto Ambrosetti; Ewa Nowakowska-Szyrwinska; Jerzy Bal; Wojciech Wiszniewski; Andreas R. Janecke; Doris Nekahm-Heis; Pavel Seeman; O. Bendová; Margaret A. Kenna; Anna Frangulov; Heidi L. Rehm; Mustafa Tekin; Armagan Incesulu; Hans Henrik M Dahl; Desirée du Sart; Lucy Jenkins; Deirdre Lucas; Maria Bitner-Glindzicz

Hearing impairment (HI) affects 1 in 650 newborns, which makes it the most common congenital sensory impairment. Despite extraordinary genetic heterogeneity, mutations in one gene, GJB2, which encodes the connexin 26 protein and is involved in inner ear homeostasis, are found in up to 50% of patients with autosomal recessive nonsyndromic hearing loss. Because of the high frequency of GJB2 mutations, mutation analysis of this gene is widely available as a diagnostic test. In this study, we assessed the association between genotype and degree of hearing loss in persons with HI and biallelic GJB2 mutations. We performed cross-sectional analyses of GJB2 genotype and audiometric data from 1,531 persons, from 16 different countries, with autosomal recessive, mild-to-profound nonsyndromic HI. The median age of all participants was 8 years; 90% of persons were within the age range of 0-26 years. Of the 83 different mutations identified, 47 were classified as nontruncating, and 36 as truncating. A total of 153 different genotypes were found, of which 56 were homozygous truncating (T/T), 30 were homozygous nontruncating (NT/NT), and 67 were compound heterozygous truncating/nontruncating (T/NT). The degree of HI associated with biallelic truncating mutations was significantly more severe than the HI associated with biallelic nontruncating mutations (P<.0001). The HI of 48 different genotypes was less severe than that of 35delG homozygotes. Several common mutations (M34T, V37I, and L90P) were associated with mild-to-moderate HI (median 25-40 dB). Two genotypes--35delG/R143W (median 105 dB) and 35delG/dela(GJB6-D13S1830) (median 108 dB)--had significantly more-severe HI than that of 35delG homozygotes.


Nature Genetics | 2000

A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene

Maria Bitner-Glindzicz; Keith J. Lindley; Paul Rutland; Diana Blaydon; Virpi V. Smith; Peter J. Milla; Khalid Hussain; Judith Furth-Lavi; Karen E. Cosgrove; Ruth M. Shepherd; Philippa D. Barnes; Rachel E. O'Brien; Peter A. Farndon; Jane C. Sowden; Xue Zhong Liu; Matthew J. Scanlan; Sue Malcolm; Mark J. Dunne; Albert Aynsley-Green; Benjamin Glaser

Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E (refs 2–6). Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14–15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18 (ref. 11). The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.


Circulation | 2006

The Jervell and Lange-Nielsen Syndrome Natural History, Molecular Basis, and Clinical Outcome

Peter J. Schwartz; Carla Spazzolini; Lia Crotti; Jørn Bathen; Jan P. Amlie; Katherine W. Timothy; Maria Shkolnikova; Charles I. Berul; Maria Bitner-Glindzicz; Lauri Toivonen; Minoru Horie; Eric Schulze-Bahr; Isabelle Denjoy

Background— Data on the Jervell and Lange-Nielsen syndrome (J-LN), the long-QT syndrome (LQTS) variant associated with deafness and caused by homozygous or compound heterozygous mutations on the KCNQ1 or on the KCNE1 genes encoding the IKs current, are still based largely on case reports. Methods and Results— We analyzed data from 186 J-LN patients obtained from the literature (31%) and from individual physicians (69%). Most patients (86%) had cardiac events, and 50% were already symptomatic by age 3. Their QTc was markedly prolonged (557±65 ms). Most of the arrhythmic events (95%) were triggered by emotions or exercise. Females are at lower risk for cardiac arrest and sudden death (CA/SD) (hazard ratio, 0.54; 95% CI, 0.34 to 0.88; P=0.01). A QTc >550 ms and history of syncope during the first year of life are independent predictors of subsequent CA/SD. Most mutations (90.5%) are on the KCNQ1 gene; mutations on the KCNE1 gene are associated with a more benign course. β-Blockers have only partial efficacy; 51% of the patients had events despite therapy and 27% had CA/SD. Conclusions— J-LN syndrome is a most severe variant of LQTS, with a very early onset and major QTc prolongation, and in which β-blockers have limited efficacy. Subgroups at relatively lower risk for CA/SD are identifiable and include females, patients with a QTc ≤550 ms, those without events in the first year of life, and those with mutations on KCNE1. Early therapy with implanted cardioverter/defibrillators must be considered.


American Journal of Human Genetics | 2005

Deficiency of the ADP-Forming Succinyl-CoA Synthase Activity Is Associated with Encephalomyopathy and Mitochondrial DNA Depletion

Orly Elpeleg; Chaya Miller; Eli Hershkovitz; Maria Bitner-Glindzicz; Gili Bondi-Rubinstein; Shamima Rahman; Alistair T. Pagnamenta; Sharon Eshhar; Ann Saada

The mitochondrial DNA (mtDNA) depletion syndrome is a quantitative defect of mtDNA resulting from dysfunction of one of several nuclear-encoded factors responsible for maintenance of mitochondrial deoxyribonucleoside triphosphate (dNTP) pools or replication of mtDNA. Markedly decreased succinyl-CoA synthetase activity due to a deleterious mutation in SUCLA2, the gene encoding the beta subunit of the ADP-forming succinyl-CoA synthetase ligase, was found in muscle mitochondria of patients with encephalomyopathy and mtDNA depletion. Succinyl-CoA synthetase is invariably in a complex with mitochondrial nucleotide diphosphate kinase; hence, we propose that a defect in the last step of mitochondrial dNTP salvage is a novel cause of the mtDNA depletion syndrome.


Journal of Clinical Investigation | 2006

Mutations within Sox2/SOX2 are associated with abnormalities in the hypothalamo-pituitary-gonadal axis in mice and humans

Karine Rizzoti; Ariel A. Avilion; Maria Bitner-Glindzicz; Stefano Cianfarani; Julie Collins; W. Kling Chong; Jeremy M.W. Kirk; John C. Achermann; Richard Ross; Danielle Carmignac; Robin Lovell-Badge; Iain C. A. F. Robinson; Mehul T. Dattani

The transcription factor SOX2 is expressed most notably in the developing CNS and placodes, where it plays critical roles in embryogenesis. Heterozygous de novo mutations in SOX2 have previously been associated with bilateral anophthalmia/microphthalmia, developmental delay, short stature, and male genital tract abnormalities. Here we investigated the role of Sox2 in murine pituitary development. Mice heterozygous for a targeted disruption of Sox2 did not manifest eye defects, but showed abnormal anterior pituitary development with reduced levels of growth hormone, luteinizing hormone, and thyroid-stimulating hormone. Consequently, we identified 8 individuals (from a cohort of 235 patients) with heterozygous sequence variations in SOX2. Six of these were de novo mutations, predicted to result in truncated protein products, that exhibited partial or complete loss of function (DNA binding, nuclear translocation, or transactivation). Clinical evaluation revealed that, in addition to bilateral eye defects, SOX2 mutations were associated with anterior pituitary hypoplasia and hypogonadotropic hypogonadism, variable defects affecting the corpus callosum and mesial temporal structures, hypothalamic hamartoma, sensorineural hearing loss, and esophageal atresia. Our data show that SOX2 is necessary for the normal development and function of the hypothalamo-pituitary and reproductive axes in both humans and mice.


American Journal of Human Genetics | 2009

A Nonsense Mutation in COQ9 Causes Autosomal-Recessive Neonatal-Onset Primary Coenzyme Q10 Deficiency: A Potentially Treatable Form of Mitochondrial Disease

Andrew J. Duncan; Maria Bitner-Glindzicz; Brigitte Meunier; Harry Costello; Iain Hargreaves; Luis C. López; Michio Hirano; Catarina M. Quinzii; Michael I. Sadowski; John Hardy; Andrew Singleton; Peter Clayton; Shamima Rahman

Coenzyme Q(10) is a mobile lipophilic electron carrier located in the inner mitochondrial membrane. Defects of coenzyme Q(10) biosynthesis represent one of the few treatable mitochondrial diseases. We genotyped a patient with primary coenzyme Q(10) deficiency who presented with neonatal lactic acidosis and later developed multisytem disease including intractable seizures, global developmental delay, hypertrophic cardiomyopathy, and renal tubular dysfunction. Cultured skin fibroblasts from the patient had a coenzyme Q(10) biosynthetic rate of 11% of normal controls and accumulated an abnormal metabolite that we believe to be a biosynthetic intermediate. In view of the rarity of coenzyme Q(10) deficiency, we hypothesized that the disease-causing gene might lie in a region of ancestral homozygosity by descent. Data from an Illumina HumanHap550 array were analyzed with BeadStudio software. Sixteen regions of homozygosity >1.5 Mb were identified in the affected infant. Two of these regions included the loci of two of 16 candidate genes implicated in human coenzyme Q(10) biosynthesis. Sequence analysis demonstrated a homozygous stop mutation affecting a highly conserved residue of COQ9, leading to the truncation of 75 amino acids. Site-directed mutagenesis targeting the equivalent residue in the yeast Saccharomyces cerevisiae abolished respiratory growth.


Nature Genetics | 2011

Mutations in lectin complement pathway genes COLEC11 and MASP1 cause 3MC syndrome

Caroline Rooryck; Anna Diaz-Font; Daniel P.S. Osborn; Elyes Chabchoub; Victor Hernandez-Hernandez; Hanan E. Shamseldin; Joanna Kenny; A Waters; Dagan Jenkins; Ali Al Kaissi; Gabriela F Leal; Bruno Dallapiccola; Franco Carnevale; Maria Bitner-Glindzicz; Melissa Lees; Raoul C. M. Hennekam; Philip Stanier; Alan J. Burns; Hilde Peeters; Fowzan S. Alkuraya; Philip L. Beales

3MC syndrome has been proposed as a unifying term encompassing the overlapping Carnevale, Mingarelli, Malpuech and Michels syndromes. These rare autosomal recessive disorders exhibit a spectrum of developmental features, including characteristic facial dysmorphism, cleft lip and/or palate, craniosynostosis, learning disability and genital, limb and vesicorenal anomalies. Here we studied 11 families with 3MC syndrome and identified two mutated genes, COLEC11 and MASP1, both of which encode proteins in the lectin complement pathway (collectin kidney 1 (CL-K1) and MASP-1 and MASP-3, respectively). CL-K1 is highly expressed in embryonic murine craniofacial cartilage, heart, bronchi, kidney and vertebral bodies. Zebrafish morphants for either gene develop pigmentary defects and severe craniofacial abnormalities. Finally, we show that CL-K1 serves as a guidance cue for neural crest cell migration. Together, these findings demonstrate a role for complement pathway factors in fundamental developmental processes and in the etiology of 3MC syndrome.


The New England Journal of Medicine | 2009

Prevalence of Mitochondrial 1555A→G Mutation in European Children

Maria Bitner-Glindzicz; Marcus Pembrey; Andrew J. Duncan; Jon Heron; Susan M. Ring; Amanda Hall; Shamima Rahman

To the Editor: Aminoglycoside antibiotics are used worldwide to treat gram-negative sepsis. Since these drugs are ototoxic and nephrotoxic, drug levels are closely monitored. However, their effect ...

Collaboration


Dive into the Maria Bitner-Glindzicz's collaboration.

Top Co-Authors

Avatar

Shamima Rahman

University College London

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sue Malcolm

University College London

View shared research outputs
Top Co-Authors

Avatar

Linda M. Luxon

University College London

View shared research outputs
Top Co-Authors

Avatar

Paul Rutland

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Zubin Saihan

Moorfields Eye Hospital

View shared research outputs
Top Co-Authors

Avatar

Andrew J. Duncan

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Dagan Jenkins

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Alistair T. Pagnamenta

Wellcome Trust Centre for Human Genetics

View shared research outputs
Top Co-Authors

Avatar

Jane C. Sowden

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge