Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Sue Malcolm is active.

Publication


Featured researches published by Sue Malcolm.


Nature Genetics | 2000

A recessive contiguous gene deletion causing infantile hyperinsulinism, enteropathy and deafness identifies the Usher type 1C gene

Maria Bitner-Glindzicz; Keith J. Lindley; Paul Rutland; Diana Blaydon; Virpi V. Smith; Peter J. Milla; Khalid Hussain; Judith Furth-Lavi; Karen E. Cosgrove; Ruth M. Shepherd; Philippa D. Barnes; Rachel E. O'Brien; Peter A. Farndon; Jane C. Sowden; Xue Zhong Liu; Matthew J. Scanlan; Sue Malcolm; Mark J. Dunne; Albert Aynsley-Green; Benjamin Glaser

Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E (refs 2–6). Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14–15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18 (ref. 11). The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.


American Journal of Human Genetics | 1998

Pelizaeus-Merzbacher disease: identification of Xq22 proteolipid-protein duplications and characterization of breakpoints by interphase FISH.

Karen Woodward; Elaine Kendall; David Vetrie; Sue Malcolm

Pelizaeus-Merzbacher disease (PMD) is an X-linked, dysmyelinating disorder of the CNS. Duplications of the proteolipid protein (PLP) gene have been found in a proportion of patients, suggesting that, in addition to coding-region or splice-site mutations, overdosage of the gene can cause PMD. We show that the duplication can be detected by interphase FISH, using a PLP probe in five patients and their four asymptomatic carrier mothers. The extent of the duplication was analyzed in each family by interphase FISH, with probes from a 1. 7-Mb region surrounding the PLP gene between markers DXS83 and DXS94. A large duplication >=500 kb was detected, with breakpoints that differed, between families, at the proximal end. Distinct separation of the duplicated PLP signals could be seen only on metaphase chromosomes in one family, providing further evidence that different duplication events are involved. Quantitative fluorescent multiplex PCR was used to confirm the duplication in patients, by the detection of increased copy number of the PLP gene. Multiallelic markers from the duplicated region were analyzed, since the identification of two alleles in an affected boy would indicate a duplication. The majority of boys were homozygous for all four markers, compared with their mothers, who were heterozygous for one to three of the markers. These results suggest that intrachromosomal rearrangements may be a common mechanism by which duplications arise in PMD. One boy was heterozygous for the PLP marker, indicating a duplication and suggesting that interchromosomal rearrangements of maternal origin also can be involved. Since duplications are a major cause of PMD, we propose that interphase FISH is a reliable method for diagnosis and identification of female carriers.


Journal of Medical Genetics | 2001

Molecular characterisation of four cases of intrachromosomal triplication of chromosome 15q11-q14

Paola Ungaro; Susan L. Christian; Judy A. Fantes; Apiwat Mutirangura; Sue Black; James Reynolds; Sue Malcolm; William B. Dobyns; David H. Ledbetter

CONTEXT Chromosomal abnormalities that involve the proximal region of chromosome 15q occur relatively frequently in the human population. However, interstitial triplications involving one 15 homologue are very rare with three cases reported to date. OBJECTIVE To provide a detailed molecular characterisation of four additional patients with interstitial triplications of chromosome 15q11-q14. DESIGN Molecular analyses were performed using DNA markers and probes specific for the 15q11-q14 region. SETTING Molecular cytogenetics laboratory at the University of Chicago. SUBJECTS Four patients with mild to severe mental retardation and features of Prader-Willi syndrome (PWS) or Angelman syndrome (AS) were referred for molecular cytogenetic analysis following identification of a suspected duplication/triplication of chromosome 15q11-q14 by routine cytogenetic analysis. MAIN OUTCOME MEASURES Fluorescence in situ hybridisation (FISH) was performed to determine the type of chromosomal abnormality present, the extent of the abnormal region, and the orientation of the extra chromosomal segments. Molecular polymorphism analysis was performed to determine the parental origin of the abnormality. Methylation and northern blot analyses of theSNRPN gene were performed to determine the effect of extra copies of the SNRPN gene on its methylation pattern and expression. RESULTS Fluorescence in situ hybridisation (FISH) using probes within and flanking the Prader-Willi/Angelman syndrome critical region indicated that all patients carried an intrachromosomal triplication of proximal 15q11-q14 in one of the two chromosome 15 homologues (trip(15)). In all patients the orientation of the triplicated segments was normal-inverted-normal, suggesting that a common mechanism of rearrangement may have been involved. Microsatellite analysis showed the parental origin of the trip(15) to be maternal in three cases and paternal in one case. The paternal triplication patient had features similar to PWS, one maternal triplication patient had features similar to AS, and the other two maternal triplication patients had non-specific findings including hypotonia and mental retardation. Methylation analysis at exon 1 of theSNRPN locus showed increased dosage of either the paternal or maternal bands in the paternal or maternal triplication patients, respectively, suggesting that the methylation pattern shows a dose dependent increase that correlates with the parental origin of the triplication. In addition, the expression ofSNRPN was analysed by northern blotting and expression levels were consistent with dosage and parental origin of the triplication. CONCLUSIONS These four additional cases of trip(15) will provide additional information towards understanding the phenotypic effects of this abnormality and aid in understanding the mechanism of formation of other chromosome 15 rearrangements.


Human Mutation | 2012

Usher syndrome type 2 caused by activation of an USH2A pseudoexon: implications for diagnosis and therapy.

Christel Vaché; Thomas Besnard; Pauline le Berre; Gema García-García; David Baux; Lise Larrieu; Caroline Abadie; Catherine Blanchet; Hanno J. Bolz; Jose M. Millan; Christian P. Hamel; Sue Malcolm; Mireille Claustres; Anne-Françoise Roux

USH2A sequencing in three affected members of a large family, referred for the recessive USH2 syndrome, identified a single pathogenic alteration in one of them and a different mutation in the two affected nieces. As the patients carried a common USH2A haplotype, they likely shared a mutation not found by standard sequencing techniques. Analysis of RNA from nasal cells in one affected individual identified an additional pseudoexon (PE) resulting from a deep intronic mutation. This was confirmed by minigene assay. This is the first example in Usher syndrome (USH) with a mutation causing activation of a PE. The finding of this alteration in eight other individuals of mixed European origin emphasizes the importance of including RNA analysis in a comprehensive diagnostic service. Finally, this mutation, which would not have been found by whole‐exome sequencing, could offer, for the first time in USH, the possibility of therapeutic correction by antisense oligonucleotides (AONs). Hum Mutat 33:104–108, 2012.


American Journal of Human Genetics | 2000

Additional Copies of the Proteolipid Protein Gene Causing Pelizaeus-Merzbacher Disease Arise by Separate Integration into the X Chromosome

M. E. Hodes; Karen Woodward; Nancy B. Spinner; Beverly S. Emanuel; Agnes Enrico-Simon; John Kamholz; Dwight Stambolian; Elaine H. Zackai; Victoria M. Pratt; Ioan T. Thomas; Kerry Crandall; Stephen R. Dlouhy; Sue Malcolm

The proteolipid protein gene (PLP) is normally present at chromosome Xq22. Mutations and duplications of this gene are associated with Pelizaeus-Merzbacher disease (PMD). Here we describe two new families in which males affected with PMD were found to have a copy of PLP on the short arm of the X chromosome, in addition to a normal copy on Xq22. In the first family, the extra copy was first detected by the presence of heterozygosity of the AhaII dimorphism within the PLP gene. The results of FISH analysis showed an additional copy of PLP in Xp22.1, although no chromosomal rearrangements could be detected by standard karyotype analysis. Another three affected males from the family had similar findings. In a second unrelated family with signs of PMD, cytogenetic analysis showed a pericentric inversion of the X chromosome. In the inv(X) carried by several affected family members, FISH showed PLP signals at Xp11.4 and Xq22. A third family has previously been reported, in which affected members had an extra copy of the PLP gene detected at Xq26 in a chromosome with an otherwise normal banding pattern. The identification of three separate families in which PLP is duplicated at a noncontiguous site suggests that such duplications could be a relatively common but previously undetected cause of genetic disorders.


Human Mutation | 2012

Non-USH2A mutations in USH2 patients.

Thomas Besnard; Christel Vaché; David Baux; Lise Larrieu; Caroline Abadie; Catherine Blanchet; Sylvie Odent; Patricia Blanchet; Patrick Calvas; Christian P. Hamel; Hélène Dollfus; Geneviève Lina-Granade; James Lespinasse; Albert David; Bertrand Isidor; Gilles Morin; Sue Malcolm; Sylvie Tuffery-Giraud; Mireille Claustres; Anne-Françoise Roux

We have systematically analyzed the two known minor genes involved in Usher syndrome type 2, DFNB31 and GPR98, for mutations in a cohort of 31 patients not linked to USH2A. PDZD7, an Usher syndrome type 2 (USH2) related gene, was analyzed when indicated. We found that mutations in GPR98 contribute significantly to USH2. We report 17 mutations in 10 individuals, doubling the number of GPR98 mutations reported to date. In contrast to mutations in usherin, the mutational spectrum of GPR98 predominantly results in a truncated protein product. This is true even when the mutation affects splicing, and we have incorporated a splicing reporter minigene assay to show this, where appropriate. Only two mutations were found which we believe to be genuine missense changes. Discrepancy in the mutational spectrum between GPR98 and USH2A is discussed. Only two patients were found with mutations in DFNB31, showing that mutations of this gene contribute to only a very small extent to USH2. Close examination of the clinical details, where available, for patients in whom no mutation was found in USH2A, GPR98, or DFNB31, showed that most of them had atypical features. In effect, these three genes account for the vast majority of USH2 patients and their analysis provide a robust pathway for routine molecular diagnosis. Hum Mutat 33:504–510, 2012.


Neuromuscular Disorders | 2004

The role of muscle biopsy in analysis of the dystrophin gene in Duchenne muscular dystrophy: experience of a national referral centre

Sylvie Tuffery-Giraud; Céline Saquet; Sylvie Chambert; Bernard Echenne; Jean Marie Cuisset; François Rivier; Mireille Cossée; Christophe Philippe; Nicole Monnier; Eric Bieth; Dominique Récan; Marie Antoinette Voelckel; Serge Perelman; Jean-Claude Lambert; Sue Malcolm; Mireille Claustres

Although the majority (65%) of boys with Duchenne muscular dystrophy (DMD) carry a deletion in the dystrophin gene, finding mutations in the remaining families is vital for counselling. We have provided a comprehensive mutation service as a national referral centre for France for over 10 years and we report here our experience. Mutation screening is on mRNA from a muscle biopsy. We have detected 79 mutations in 89 samples referred with a diagnosis of DMD, which is the most comprehensive survey to date of the full range of nondeletion mutations. Although some mutations were nonsense mutations, some frameshift mutations and some splicing mutations, all of them led to the generation of premature stop codons or a shortened product which could be detected using the Protein Truncation Test. We recommend a protocol which is robust and sensitive applied to the entire coding region reverse-transcribed from dystrophin transcripts from muscle biopsy.


Molecular Genetics & Genomic Medicine | 2014

Experience of targeted Usher exome sequencing as a clinical test

Thomas Besnard; Gema García-García; David Baux; Christel Vaché; Valérie Faugère; Lise Larrieu; Susana Léonard; Jose M. Millan; Sue Malcolm; Mireille Claustres; Anne-Françoise Roux

We show that massively parallel targeted sequencing of 19 genes provides a new and reliable strategy for molecular diagnosis of Usher syndrome (USH) and nonsyndromic deafness, particularly appropriate for these disorders characterized by a high clinical and genetic heterogeneity and a complex structure of several of the genes involved. A series of 71 patients including Usher patients previously screened by Sanger sequencing plus newly referred patients was studied. Ninety‐eight percent of the variants previously identified by Sanger sequencing were found by next‐generation sequencing (NGS). NGS proved to be efficient as it offers analysis of all relevant genes which is laborious to reach with Sanger sequencing. Among the 13 newly referred Usher patients, both mutations in the same gene were identified in 77% of cases (10 patients) and one candidate pathogenic variant in two additional patients. This work can be considered as pilot for implementing NGS for genetically heterogeneous diseases in clinical service.


Human Mutation | 2014

Enrichment of LOVD-USHbases with 152 USH2A Genotypes Defines an Extensive Mutational Spectrum and Highlights Missense Hotspots

David Baux; Catherine Blanchet; Christian P. Hamel; Isabelle Meunier; Lise Larrieu; Valérie Faugère; Christel Vaché; Pierangela Castorina; Bernard Puech; Dominique Bonneau; Sue Malcolm; Mireille Claustres; Anne Françoise Roux

Alterations of USH2A, encoding usherin, are responsible for more than 70% of cases of Usher syndrome type II (USH2), a recessive disorder that combines moderate to severe hearing loss and retinal degeneration. The longest USH2A transcript encodes usherin isoform b, a 5,202‐amino‐acid transmembrane protein with an exceptionally large extracellular domain consisting notably of a Laminin N‐terminal domain and numerous Laminin EGF‐like (LE) and Fibronectin type III (FN3) repeats. Mutations of USH2A are scattered throughout the gene and mostly private. Annotating these variants is therefore of major importance to correctly assign pathogenicity. We have extensively genotyped a novel cohort of 152 Usher patients and identified 158 different mutations, of which 93 are newly described. Pooling this new data with the existing pathogenic variants already incorporated in USHbases reveals several previously unappreciated features of the mutational spectrum. We show that parts of the protein are more likely to tolerate single amino acid variations, whereas others constitute pathogenic missense hotspots. We have found, in repeated LE and FN3 domains, a nonequal distribution of the missense mutations that highlights some crucial positions in usherin with possible consequences for the assessment of the pathogenicity of the numerous missense variants identified in USH2A.


Clinical Genetics | 2012

Audiological findings in 100 USH2 patients

Abadie C; Blanchet C; Baux D; Larrieu L; Thomas Besnard; Ravel P; Biboulet R; Hamel C; Sue Malcolm; Mondain M; Mireille Claustres; Anne-Françoise Roux

Abadie C, Blanchet C, Baux D, Larrieu L, Besnard T, Ravel P, Biboulet R, Hamel C, Malcolm S, Mondain M, Claustres M, Roux A‐F. Audiological findings in 100 USH2 patients.

Collaboration


Dive into the Sue Malcolm's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar

Christel Vaché

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar

David Baux

University of Montpellier

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Jane C. Sowden

UCL Institute of Child Health

View shared research outputs
Top Co-Authors

Avatar

Karen Woodward

University College London

View shared research outputs
Top Co-Authors

Avatar

Keith J. Lindley

Great Ormond Street Hospital

View shared research outputs
Top Co-Authors

Avatar

Khalid Hussain

University College London

View shared research outputs
Top Co-Authors

Avatar

Mark J. Dunne

University of Manchester

View shared research outputs
Top Co-Authors

Avatar

Paul Rutland

UCL Institute of Child Health

View shared research outputs
Researchain Logo
Decentralizing Knowledge