Paul Rutland
UCL Institute of Child Health
Network
Latest external collaboration on country level. Dive into details by clicking on the dots.
Publication
Featured researches published by Paul Rutland.
Nature Genetics | 2000
Maria Bitner-Glindzicz; Keith J. Lindley; Paul Rutland; Diana Blaydon; Virpi V. Smith; Peter J. Milla; Khalid Hussain; Judith Furth-Lavi; Karen E. Cosgrove; Ruth M. Shepherd; Philippa D. Barnes; Rachel E. O'Brien; Peter A. Farndon; Jane C. Sowden; Xue Zhong Liu; Matthew J. Scanlan; Sue Malcolm; Mark J. Dunne; Albert Aynsley-Green; Benjamin Glaser
Usher syndrome type 1 describes the association of profound, congenital sensorineural deafness, vestibular hypofunction and childhood onset retinitis pigmentosa. It is an autosomal recessive condition and is subdivided on the basis of linkage analysis into types 1A through 1E (refs 2–6). Usher type 1C maps to the region containing the genes ABCC8 and KCNJ11 (encoding components of ATP-sensitive K + (KATP) channels), which may be mutated in patients with hyperinsulinism. We identified three individuals from two consanguineous families with severe hyperinsulinism, profound congenital sensorineural deafness, enteropathy and renal tubular dysfunction. The molecular basis of the disorder is a homozygous 122-kb deletion of 11p14–15, which includes part of ABCC8 and overlaps with the locus for Usher syndrome type 1C and DFNB18 (ref. 11). The centromeric boundary of this deletion includes part of a gene shown to be mutated in families with type 1C Usher syndrome, and is hence assigned the name USH1C. The pattern of expression of the USH1C protein is consistent with the clinical features exhibited by individuals with the contiguous gene deletion and with isolated Usher type 1C.
Nature Genetics | 2003
Lm McGregor; Vile Makela; S Darling; Sofia Vrontou; Georges Chalepakis; Catherine Roberts; Nicola Smart; Paul Rutland; Natalie J. Prescott; Jason Hopkins; Elizabeth Bentley; Alison Shaw; Emma Roberts; Robert F. Mueller; Shalini Jadeja; Nicole Philip; John Nelson; Christine Francannet; Antonio Perez-Aytes; André Mégarbané; Bronwyn Kerr; Brandon J. Wainwright; Adrian S. Woolf; Robin M. Winter; Peter J. Scambler
Fraser syndrome (OMIM 219000) is a multisystem malformation usually comprising cryptophthalmos, syndactyly and renal defects. Here we report autozygosity mapping and show that the locus FS1 at chromosome 4q21 is associated with Fraser syndrome, although the condition is genetically heterogeneous. Mutation analysis identified five frameshift mutations in FRAS1, which encodes one member of a family of novel proteins related to an extracellular matrix (ECM) blastocoelar protein found in sea urchin. The FRAS1 protein contains a series of N-terminal cysteine-rich repeat motifs previously implicated in BMP metabolism, suggesting that it has a role in both structure and signal propagation in the ECM. It has been speculated that Fraser syndrome is a human equivalent of the blebbed phenotype in the mouse, which has been associated with mutations in at least five loci including bl. As mapping data were consistent with homology of FRAS1 and bl, we screened DNA from bl/bl mice and identified a premature termination of mouse Fras1. Thus, the bl mouse is a model for Fraser syndrome in humans, a disorder caused by disrupted epithelial integrity in utero.
European Journal of Human Genetics | 1996
Louise J. Pulleyn; William Reardon; David Wilkes; Paul Rutland; Barry M. Jones; Richard Hayward; Christine M. Hall; Louise Brueton; Nicki Chun; Ed Lammer; Sue Malcolm; Robin M. Winter
The causative relationship between several of the syndromic forms of craniosynostosis and mutations in the fibroblast growth factor receptor (FGFR) loci is now well established. However, within the group of patients with craniosynostosis, there are several families and sporadic cases whose clinical features differ in variable degrees from the classically described syndromes of craniosynostosis. In this communication we present novel FGFR2 mutations associated with a spectrum of craniosynostosis phenotypes in 4 sporadic cases and in one family in which craniosynostosis segregates. The mutation and phenotype data presented emphasise the clinical variability of mutations at this locus and underline the plasticity of the phenotype-genotype relationship in this important group of congenital malformation syndromes. Mutations found were tyrosine 105 to cysteine, glycine 338 to glutamic acid, serine 351 to cysteine and glycine 384 to arginine. These are the first reported mutations in the first immunoglobulin-like loop (tyrosine 105 to cysteine) and the transmembrane domain (glycine 384 to arginine) of FGFR2, providing further insights into the mechanism of abnormal receptor function in FGFR2 mutations.
Human Molecular Genetics | 2010
Elisa Fassone; Andrew J. Duncan; Jan-Willem Taanman; Alistair T. Pagnamenta; Michael I. Sadowski; Tatjana Holand; Waseem Qasim; Paul Rutland; Sarah E. Calvo; Vamsi K. Mootha; Maria Bitner-Glindzicz; Shamima Rahman
Complex I is the first and largest enzyme in the respiratory chain and is located in the inner mitochondrial membrane. Complex I deficiency is the most commonly reported mitochondrial disorder presenting in childhood, but the molecular basis of most cases remains elusive. We describe a patient with complex I deficiency caused by mutation of the molecular chaperone FOXRED1. A combined homozygosity mapping and bioinformatics approach in a consanguineous Iranian-Jewish pedigree led to the identification of a homozygous mutation in FOXRED1 in a child who presented with infantile-onset encephalomyopathy. Silencing of FOXRED1 in human fibroblasts resulted in reduced complex I steady-state levels and activity, while lentiviral-mediated FOXRED1 transgene expression rescued complex I deficiency in the patient fibroblasts. This FAD-dependent oxidoreductase, which has never previously been associated with human disease, is now shown to be a complex I-specific molecular chaperone. The discovery of the c.1054C>T; p.R352W mutation in the FOXRED1 gene is a further contribution towards resolving the complex puzzle of the genetic basis of human mitochondrial disease.
Neurogenetics | 2007
Nicole I. Wolf; Maria Cundall; Paul Rutland; Elisabeth Rosser; Robert Surtees; Sarah Benton; Wui K. Chong; Sue Malcolm; Friedrich Ebinger; Maria Bitner-Glindzicz; Karen Woodward
Mutations in GJA12 have been shown to cause Pelizaeus–Merzbacher-like disease (PMLD). We present two additional patients from one family carrying a homozygous frameshift mutation in GJA12. Both presented initially with nystagmus. The older girl developed ataxia first, then progressive spastic ataxia. The younger boy suffered from severe sensory neuropathy. Magnetic resonance imaging (MRI) of both children showed progressive demyelination in addition to dysmyelination, and also characteristic brainstem abnormalities. In children with nystagmus, ataxia and dysmyelination, mutation analysis of GJA12 should be considered early, especially if inheritance is autosomal recessive.
American Journal of Medical Genetics | 2006
F Idrees; Agnes Bloch-Zupan; Samantha L. Free; Daniela Vaideanu; Pamela J. Thompson; Paul Ashley; G Brice; Paul Rutland; Maria Bitner-Glindzicz; Peng T. Khaw; S Fraser; Sanjay M. Sisodiya; Jane C. Sowden
Axenfeld‐Rieger Syndrome (ARS) is a genetically heterogeneous birth defect characterized by malformation of the anterior segment of the eye associated with glaucoma. Mutation of the PITX2 homeobox gene has been identified as a cause of ARS. We report a novel Arg5Trp missense mutation in the PITX2 homeodomain, which is associated with brain abnormalities. One patient had a small sella turcica likely to reflect hypoplasia of the pituitary gland and consistent with the critical role identified for Pitx2 in pituitary development in mice. Two patients had an enlarged cisterna magna, one with a malformed cerebellum, and two had executive skills deficits one in isolation and one in association with a below average intellectual capacity. The mutation caused a typical ARS ocular phenotype. All affected had iris hypoplasia, anterior iris to corneal adhesions, and corectopia. The ocular phenotype varied significantly in severity and showed some asymmetry. All affected also had redundant peri‐umbilical skin, a hypoplastic maxilla, microdontia, and hypodontia missing between 20 and 27 teeth with an unusual pattern of tooth loss. Dental phenotypes were documented as they are often poorly characterized in ARS patients. All affected individuals showed an absence of first permanent molars with variable absence of other rarely absent teeth: the permanent upper central incisors, maxillary and mandibular first and second molars, and the mandibular canines. Based on the distinctive dental anomalies, we suggest that the dental phenotype can assist in predicting the presence of a PITX2 mutation and the possibility of brain abnormalities.
Human Molecular Genetics | 2015
Mary O'Sullivan; Paul Rutland; Deirdre Lucas; Emma Ashton; Sebastian Hendricks; Shamima Rahman; Maria Bitner-Glindzicz
The mitochondrial DNA mutation m.1555A>G predisposes to hearing loss following aminoglycoside antibiotic exposure in an idiosyncratic dose-independent manner. However, it may also cause maternally inherited hearing loss in the absence of aminoglycoside exposure or any other clinical features (non-syndromic hearing loss). Although m.1555A>G was identified as a cause of deafness more than twenty years ago, the pathogenic mechanism of this mutation of ribosomal RNA remains controversial. Different mechanistic concepts have been proposed. Most recently, evidence from cell lines and animal models suggested that patients with m.1555A>G may have more 12S rRNA N6, N6–dimethyladenosine (m62A) methylation than controls, so-called ‘hypermethylation’. This has been implicated as a pathogenic mechanism of mitochondrial dysfunction but has yet to be validated in patients. 12S m62A rRNA methylation, by the mitochondrial transcription factor 1 (TFB1M) enzyme, occurs at two successive nucleotides (m.1584A and m.1583A) in close proximity to m.1555A>G. We examined m62A methylation in 14 patients with m.1555A>G, and controls, and found all detectable 12S rRNA transcripts to be methylated in both groups. Moreover, different RNA samples derived from the same patient (lymphocyte, fibroblast and lymphoblast) revealed that only transformed cells contained some unmethylated 12S rRNA transcripts, with all detectable 12S rRNA transcripts derived from primary samples m62A-methylated. Our data indicate that TFB1M 12S m62A rRNA hypermethylation is unlikely to be a pathogenic mechanism and may be an artefact of previous experimental models studied. We propose that RNA methylation studies in experimental models should be validated in primary clinical samples to ensure that they are applicable to the human situation.
American Journal of Medical Genetics Part A | 2004
Deborah J. Shears; Amaka C. Offiah; Paul Rutland; Tony Sirimanna; Maria Bitner-Glindzicz; Christine M. Hall
We present the clinical and radiographic findings in a mother and son with a dominantly inherited mesomelic skeletal dysplasia almost identical to that described in a large Thai family by Kantaputra et al., in which ankle, carpal and tarsal synostoses were noted. The proband in the family is a 48‐year‐old woman with mesomelic limb shortening, most pronounced in the upper limbs. Her parents were of normal stature and build. Her 15‐year‐old son has similar mesomelic limb shortening, and in addition talipes equinovarus. Radiological examination showed severe shortening of the radius and ulna with bowing of the radius and dislocation of the radial head. Multiple carpal and tarsal synostoses were present and in addition, the talus and calcaneum were fused. In the original Thai family, linkage to chromosome 2q24‐q32, which contains the HOXD cluster has been reported, and it is postulated that the phenotype may result from a disturbance of regulation of the HOXD cluster. Although linkage analysis was not possible in our family, molecular analysis was undertaken and HOXD11 was sequenced, however, no mutations were detected. This is only the second reported family affected with Kantaputra mesomelic dysplasia (MIM 156232), a distinct mesomelic skeletal dysplasia.
Nature Genetics | 1995
Andrew O.M. Wilkie; Sarah F. Slaney; Michael Oldridge; Michael D. Poole; Geraldine J. Ashworth; A.D. Hockley; Richard Hayward; David J. David; Louise J. Pulleyn; Paul Rutland; Susan Malcolm; Robin M. Winter; William Reardon
Nature Genetics | 1994
William Reardon; Robin M. Winter; Paul Rutland; Louise J. Pulleyn; Barry M. Jones; Sue Malcolm