Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where María C. Moreno-Bondi is active.

Publication


Featured researches published by María C. Moreno-Bondi.


Analytical and Bioanalytical Chemistry | 2009

An overview of sample preparation procedures for LC-MS multiclass antibiotic determination in environmental and food samples

María C. Moreno-Bondi; M.D. Marazuela; Sonia Herranz; Erika Rodríguez

Antibiotics are a class of pharmaceuticals that are of great interest due to the large volumes of these substances that are consumed in both human and veterinary medicine, and due to their status as the agents responsible for bacterial resistance. They can be present in foodstuffs and in environmental samples as multicomponent chemical mixtures that exhibit a wide range of mechanisms of action. Moreover, they can be transformed into different metabolites by the action of microorganisms, as well as by other physical or chemical means, resulting in mixtures with higher ecotoxicities and risks to human health than those of the individual compounds. Therefore, there is growing interest in the availability of multiclass methods for the analysis of antimicrobial mixtures in environmental and food samples at very low concentrations. Liquid chromatography (LC) has become the technique of choice for multiclass analysis, especially when coupled to mass spectrometry (LC-MS) and tandem MS (LC-MS2). However, due to the complexity of the matrix, in most cases an extraction step for sample clean-up and preconcentration is required before analysis in order to achieve the required sensitivities. This paper reviews the most recent developments and applications of multiclass antimicrobial determination in environmental and food matrices, emphasizing the practical aspects of sample preparation for the simultaneous extraction of antimicrobials from the selected samples. Future trends in the application of LC-MS-based techniques to multiclass antibiotic analysis are also presented.


Biosensors and Bioelectronics | 2000

Fiber optic monitoring of carbamate pesticides using porous glass with covalently bound chlorophenol red

Marı́a P Xavier; Begoña Vallejo; M.D. Marazuela; María C. Moreno-Bondi; Francesco Baldini; Alida Falai

An optical fiber biosensor for the determination of the pesticides propoxur (Baygon) and carbaryl, two of the most commonly used carbamate insecticides in vegetable crops, is described. A pH indicator, chlorophenol red, is used as optical transducer of the inhibition of the enzyme acetylcholinesterase by the analytes. The biorecognition element is covalently immobilized onto controlled pore glass beads (CPG) and packed in a thermostatized bioreactor connected to a flow-through cell that contains CPG-immobilized chlorophenol red placed at the common end of a bifurcated fiber optic bundle. In the presence of a constant acetylcholine concentration, the colour of the pH sensitive layer changes and the measured reflectance signal can be related to the carbamate concentration in the sample solution. The performance of the biosensor has been optimized using a flow injection system. The linear dynamic range for the determination of carbaryl and propoxur spans from 0.8 to 3.0 mg l(-1) and from 0.03 to 0.50 mg l(-1), respectively. The detection limit (3 s) of the biosensor for propoxur (0.4 ng) is lower than that measured for carbaryl (25 ng). Reproducibility, stability and interference studies of the optical device are reported. The biosensor has been applied to the determination of propoxur in spiked vegetables (onion and lettuce) using ultrasound extraction, achieving recovery values between 93 and 95% for onion samples at the different concentration levels assayed.


Analytica Chimica Acta | 2004

Application of multivariate analysis to the screening of molecularly imprinted polymers for bisphenol A

F. Navarro-Villoslada; Blanca San Vicente; María C. Moreno-Bondi

A key issue in the synthesis of molecularly imprinted polymers (MIPs) is the identification and optimisation of the main factors that affect the material structure and its molecular recognition properties. This paper describes the application of an experimental design and multivariate analysis method for the synthesis of bisphenol A (BPA)-selective MIPs. Six factors with a large impact on the MIP synthesis and its analytical performance have been optimised: the amount of template, the type and the percentage of functional and cross-linking monomers, the polymerisation method (i.e. thermal or UV initiation) and the porogenic solvent. The polymers have been prepared in small-scale (mini-MIPs) and, after careful removal of the template, their BPA rebinding capacity has been evaluated and related to the MIP composition. Among the two functional monomers tested, namely 4-vinylpyridine (4-vpy) and methacrylic acid (MAA), the former rendered the best selectivity for BPA analysis. The partial least squares (PLS) models revealed that the photoinitiated polymers with a 1:1 ratio of 4-vinylpyridine to cross-linker (EDMA or TRIM) yield the highest specific binding. Such procedure is time and cost effective and can be used as a general tool in the preparation of MIPs for different analytes.


Journal of Chromatography A | 2008

Solid-phase extraction of fluoroquinolones from aqueous samples using a water-compatible stochiometrically imprinted polymer

Elena Benito-Peña; Javier L. Urraca; Börje Sellergren; María C. Moreno-Bondi

A novel and simple method for the selective cleanup and preconcentration of fluoroquinolone antibiotics in environmental water samples has been developed using molecularly imprinted polymer solid-phase extraction (MISPE). The molecularly imprinted polymer (MIP) has been prepared using enrofloxacin (ENR) as the template and a stoichiometric quantity of urea-based functional monomer to target the single oxyanionic moieties in the template molecule. The selectivity of the material for enrofloxacin, and structurally related and non-related compounds, has been evaluated using it as stationary phase in liquid chromatography. The novel polymer and the corresponding non-imprinted material (NIP) have been characterised using nitrogen adsorption-desorption isotherms and scanning electron microscopy. Various parameters affecting the extraction efficiency of the materials in the MISPE procedure were evaluated in order to achieve optimal preconcentration and to reduce non-specific interactions. The optimized MISPE/HPLC with fluorescence detection (FLD) method allows direct extraction of the antibiotics from the aqueous samples followed by a selective washing with acetonitrile/water (0.1M 2-[4-(2-hydroxyethyl)-1-piperazinyl]ethanesulfonic acid (HEPES) buffer, pH 7.5) (10/90, v/v) and elution with 2% trifluoracetic acid in methanol. Good recoveries and precision, ranging between 66 and 100% (RSD: 2-12%, n=3) for danofloxacin, enrofloxacin, oxolinic acid and flumequine, and moderate recoveries (15-40%, RSD 4-9%, n=3) for norfloxacin, ciprofloxacin, lomefloxacin and sarafloxacin, have been obtained for river water samples fortified with 0.50, 0.75 and 1.0microgL(-1) of all the antibiotics. The method detection limits ranged between 0.01 and 0.30microgL(-1) for all the antibiotics tested, when 100mL water samples were processed. The results demonstrate the applicability of the optimized method for the selective extraction of fluoroquinolones in environmental water samples at the ngL(-1) level.


Analytical Chemistry | 2011

Multiresidue determination of ultratrace levels of fluoroquinolone antimicrobials in drinking and aquaculture water samples by automated online molecularly imprinted solid phase extraction and liquid chromatography.

Erika Rodríguez; Fernando Navarro-Villoslada; Elena Benito-Peña; M.D. Marazuela; María C. Moreno-Bondi

The present work describes the development of a sensitive and highly selective innovative method for the simultaneous detection of six fluoroquinolone (FQ) antimicrobials (enrofloxacin, ciprofloxacin, norfloxacin, levofloxacin, danofloxacin, and sarafloxacin) in water samples. This detection is based on online solid phase extraction, coupled to liquid chromatography (LC), using for the first time tailor-made molecularly imprinted microspherical polymer particles prepared via precipitation polymerization. Various parameters affecting the extraction efficiency of the polymer have been optimized to reduce nonspecific interactions and to achieve selective uptake of the antibiotics from real samples. The method shows good recoveries ranging between 62% and 102% (V = 25 mL) for the different FQs tested and excellent interday and intraday precision with relative standard deviation (RSD) values between 2-5% and 2-6%, respectively. The detection limits were between 1-11 ng L(-1) (drinking water) and 1-12 ng L(-1) (fish farm water) when 25 mL samples were processed. The polymer showed selectivity for FQs containing a piperazine moiety whereas no retention was found for other antibiotics or nonrelated compounds. The method has been applied to the analysis of trace amounts of the FQs tested in drinking and fish farm water samples with excellent recoveries (>91%) and good precision (RSDs <5%).


Journal of Chromatography A | 2014

Multiresidue analysis of fluoroquinolone antimicrobials in chicken meat by molecularly imprinted solid-phase extraction and high performance liquid chromatography.

Javier L. Urraca; M. Castellari; Carlos Angulo Barrios; María C. Moreno-Bondi

This paper describes the synthesis of novel molecularly imprinted polymer (MIP) micro-beads for the selective extraction (MISPE) of six fluoroquinolone (FQ) antibiotics (enrofloxacin, ciprofloxacin, lomefloxacin, danofloxacin, sarafloxacin and norfloxacin) from chicken muscle samples and further analysis by high-performance liquid chromatography (HPLC) with fluorescence (FLD) or mass spectrometry (MS) detection. A combinatorial screening approach has been applied to select the optimal functional monomer and cross-linker formulation for polymer synthesis. The MIP prepared using enoxacin (ENOX) as the template - a mixture of methacrylic acid (MAA) and trifluoromethacrylic acid (TFMAA) as functional monomers and ethylene glycol dimethacrylate (EDMA) as the cross-linker - showed superior FQ recognition properties than the rest of the materials generated. MIP spherical particles were prepared using silica beads as sacrificial scaffolds. The polymers were packed in solid phase extraction (SPE) cartridges. The optimized MISPE-HPLC method allows the extraction of the antimicrobials from aqueous samples followed by a selective washing with acetonitrile/water (0.005% TFA, pH=3.0), 20:80 (v/v) and elution with 5% trifluoroacetic acid in methanol. Optimum MISPE conditions led to recoveries of the target FQs in chicken muscle samples ranging between 68 and 102% and precisions in the 3-4% range (RSD, n=18). The method has been validated according to European Union Decision 2002/657/EC, in terms of linearity, accuracy, precision, selectivity, decision limit (CCα) and detection capability (CCβ) by HPLC-FLD and HPLC-MS/MS. The limits of detection were improved using HPLC-MS/MS analysis and ranged between 0.2 and 2.7μgkg(-1) (S/N=3) for all the FQs tested.


Biosensors and Bioelectronics | 1997

Free cholesterol fiber-optic biosensor for serum samples with simplex optimization

M.D. Marazuela; B. Cuesta; María C. Moreno-Bondi; A. Quejido

An optical fiber biosensor for free cholesterol monitoring in serum samples is described. Silicone-entrapped tris(4,7-diphenyl-1,10-phenanthroline) ruthenium(II) complex, the luminescence of which is sensitive to oxygen changes, is used as an optical transducer of the oxidation of cholesterol by cholesterol oxidase. The biocatalyst is entrapped in a graphite powder layer deposited onto the dyed silicone film. Optimization of some interdependent chemical variables which affect the performance of the biosensor has been achieved by application of a super-modified simplex method. The dynamic range of the biosensing membranes is found to be 0.15-3.0 mM of free cholesterol. Studies of the reproducibility, stability and interferences of the device, as well as the application of the sensor to measurements in serum samples, are reported. Simplex optimization has proven to be a very useful tool in the search for the optimal conditions for performing analyses with the optical fiber biosensor.


Biosensors and Bioelectronics | 2009

Microalgae fiber optic biosensors for herbicide monitoring using sol–gel technology

Elena Peña-Vázquez; Emilia Maneiro; C. Pérez-Conde; María C. Moreno-Bondi; Eduardo Costas

Three microalgal species (Dictyosphaerium chlorelloides (D.c.), Scenedesmus intermedius (S.i.) and Scenedesmus sp. (S.s.)) were encapsulated in silicate sol-gel matrices and the increase in the amount of chlorophyll fluorescence signal was used to quantify simazine. Influence of several parameters on the preparation of the sensing layers has been evaluated: effect of pH on sol-gel gelation time; effect of algae density on sensor response; influence of glycerol (%) on the membrane stability. Long term stability was also tested and the fluorescence signal from biosensors remained stable for at least 3 weeks. D.c. biosensor presented the lowest detection limits for simazine (3.6 microg L(-1)) and the broadest dynamic calibration range (19-860 microg L(-1)) with IC(50) 125+/-14 microg L(-1). Biosensor was validated by HPLC with UV/DAD detection. The biosensor showed response to those herbicides that inhibit the photosynthesis at photosystem II (triazines: simazine, atrazine, propazine, terbuthylazine; urea based herbicides: linuron). However, no significant increases of fluorescence response was obtained for similar concentrations of 2,4-D (hormonal herbicide) or Cu(II). The combined use of two biosensors that use two different genotypes, sensitive and resistant to simazine, jointly allowed improving microalgae biosensor specificity.


ACS Applied Materials & Interfaces | 2014

Passivated Aluminum Nanohole Arrays for Label-Free Biosensing Applications

Víctor Canalejas-Tejero; Sonia Herranz; Alyssa Bellingham; María C. Moreno-Bondi; Carlos Angulo Barrios

We report the fabrication and performance of a surface plasmon resonance aluminum nanohole array refractometric biosensor. An aluminum surface passivation treatment based on oxygen plasma is developed in order to circumvent the undesired effects of oxidation and corrosion usually found in aluminum-based biosensors. Immersion tests in deionized water and device simulations are used to evaluate the effectiveness of the passivation process. A label-free bioassay based on biotin analysis through biotin-functionalized dextran-lipase conjugates immobilized on the biosensor-passivated surface in aqueous media is performed as a proof of concept to demonstrate the suitability of these nanostructured aluminum films for biosensing.


Journal of Pharmaceutical and Biomedical Analysis | 2009

Quantitative determination of penicillin V and amoxicillin in feed samples by pressurised liquid extraction and liquid chromatography with ultraviolet detection.

Elena Benito-Peña; Javier L. Urraca; María C. Moreno-Bondi

A rapid and simple method is proposed for the routine determination of amoxicillin (AMOX) and penicillin V (PENV) in swine feedingstuffs. The method is based on pressurised liquid extraction (PLE) followed by high performance liquid chromatography with ultraviolet detection (PLE-HPLC-UV) for antibiotic analysis. Parameters affecting PLE procedure, such as temperature, solvent composition, number of extraction cycles and sample cell size, were evaluated in order to achieve the highest extraction efficiency. The optimised method employed 11mL extraction cells, acetonitrile-water mixtures (25:75, v/v) for AMOX and (50:50, v/v) for PENV, as extraction solvent, 102.07atm of extraction pressure, 50 degrees C of extraction temperature, 5min of static time and 60% flush volume of the cell size. Extracts were filtered and directly analysed by HPLC-DAD/UV without further clean-up. Mean recovery rates for feed samples fortified with 200-500mgkg(-1) of both antibiotics were 86% for AMOX (RSD< or =6%) and 95% for PENV (RSD< or =3%). The method was successfully applied to the analysis of a commercial medicated swine feedingstuff, and the results were in good agreement with those obtained using mechanical shaking or ultrasonic extraction combined with solid phase extraction (UE-SPE), previously applied in the literature for feed analysis. The extraction efficiencies were evaluated by statistical comparison (analysis of variance, ANOVA-single factor) of the results obtained using the different extraction methods. Compared to the alternative techniques, PLE offers several practical advantages: easy to perform, fast, savings in solvent volume and in time, all steps are fully automated and further clean-up is not necessary for penicillin analysis.

Collaboration


Dive into the María C. Moreno-Bondi's collaboration.

Top Co-Authors

Avatar

Guillermo Orellana

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Elena Benito-Peña

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Javier L. Urraca

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

M.D. Marazuela

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Carlos Angulo Barrios

Technical University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Sergio Carrasco

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

Sonia Herranz

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar

F. Navarro-Villoslada

Complutense University of Madrid

View shared research outputs
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge