Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria Cristina Menziani is active.

Publication


Featured researches published by Maria Cristina Menziani.


Journal of Physical Chemistry B | 2008

Elucidation of the structural role of fluorine in potentially bioactive glasses by experimental and computational investigation.

Gigliola Lusvardi; Gianluca Malavasi; Cortada M; Ledi Menabue; Maria Cristina Menziani; Alfonso Pedone; Ulderico Segre

Glasses belonging to the Na(2)O-CaO-P(2)O(5)-SiO(2) system and modified by CaF(2) substitution for CaO and Na(2)O alternatively, were synthesized and characterized experimentally and computationally. The results of molecular dynamics simulations show that fluorine is almost exclusively bonded to modifier cations (Ca and Na) with coordination number close to 4. A similar mean coordination number value is found in the crystal phases obtained by means of thermal treatment at fixed temperature. Addition of fluorine increases the polymerization of silicate tetrahedra by removing modifiers from the siliceous matrix. No appreciable amount of Si-F bonds are detected.


Journal of Materials Chemistry | 2012

The structure of fluoride-containing bioactive glasses: new insights from first-principles calculations and solid state NMR spectroscopy

Alfonso Pedone; Thibault Charpentier; Maria Cristina Menziani

Fluoride-containing bioactive glasses are attracting particular interest in many fields of dentistry and orthopedics because they combine the bone-bonding ability of bioactive glasses with the anticariogenic protection provided by fluoride ions. Since the biomedical applications of these materials critically depend on the release of ionic species in the surrounding physiological environment, a deep knowledge of their environments is required. In this paper, density functional theory calculations and spin effective Hamiltonians have been employed to analyse the NMR signatures of the various environments of 19F, 29Si, 31P and 23Na atoms in fluorinated bioglasses structural models previously generated by Car–Parrinello molecular dynamics simulations. Comparison with experimental spectra expressly recorded in this work shows a good agreement and allows the enlightenment of some longstanding issues about the atomic structure of fluorinated bioglasses, such as the presence of Si–F and Si–O–P bonds. In particular, it is shown that Si–F bonds cannot be resolved by using MAS NMR experiments only, and 29Si{19F} REDOR experiments, that probes directly spatial proximities among atoms, must be employed. Our results show that F is coordinated entirely to the modifier ions Na and Ca, and that no Si–F bonds are present in the real glass structure. Thus, the addition of fluorine to the 45S5 Bioglass® increases the polymerization of the silicate network by removing modifiers from the siliceous matrix and reducing its reactivity. Finally, the computed isotropic chemical shifts of the various environments of phosphorus show that, if present, Si–O–P bonds should be clearly noticeable in the 31P static NMR experimental spectrum. Instead, the latter show that P is present as isolated orthophosphate units and does not enter into the siliceous matrix by forming Si–O–P bonds as conjectured by molecular dynamics simulations.


Physical Chemistry Chemical Physics | 2010

Extension of the AMBER force-field for the study of large nitroxides in condensed phases: an ab initio parameterization.

Emiliano Stendardo; Alfonso Pedone; Paola Cimino; Maria Cristina Menziani; Orlando Crescenzi; Vincenzo Barone

The popular AMBER force-field has been extended to provide an accurate description of large and flexible nitroxide free-radicals in condensed phases. New atom types have been included, and relevant parameters have been fitted based on geometries, vibrational frequencies and potential energy surfaces computed at the DFT level for several different classes of nitroxides, both in vacuo and in different solvents. The resulting computational tool is capable of providing reliable structures, vibrational frequencies, relative energies and spectroscopic observables for large and flexible nitroxide systems, including those typically used as spin labels. The modified force field has been employed in the context of an integrated approach, based on classical molecular dynamics and discrete-continuum solvent models, for the investigation of environmental and short-time dynamic effects on the hyperfine and gyromagnetic tensors of PROXYL, TEMPO and INDCO spin probes. The computed magnetic parameters are in very good agreement with the available experimental values, and the procedure allows for an unbiased evaluation of the role of different effects in tuning the overall EPR observables.


Journal of Biomaterials Applications | 2008

Properties of Zinc Releasing Surfaces for Clinical Applications

Gigliola Lusvardi; Gianluca Malavasi; Ledi Menabue; Maria Cristina Menziani; Alfonso Pedone; Ulderico Segre; Valentina Aina; Alessandra Perardi; C. Morterra; Francesca Boccafoschi; S. Gatti; M. Bosetti; Mario Cannas

Two series of glasses of general formula (2-p) SiO2·1.1Na 2O·CaO·pP2O5·xZnO (p=0.10, 0.20; x=0.0, 0.16, 0.35, and 0.78) have been analyzed for physico-chemical surface features before and after contact with simulated body fluid, morphological characteristics, and osteoblast-like cells behavior when cultured on them. The resulted good cell adhesion and growth, along with nonsignificant changes of the focal contacts, allow the authors to indicate HZ5 and HP5Z5 glasses as the ones having optimal ratio of Zn/P to maintain acceptable cell behavior, comparable to the bioactive glass (Bioglass®) used as a control; results are also rationalized by means of three-dimensional models derived by molecular dynamic simulations, with decomposition and conversion rates optimized with respect to the parent Henchs Bioglass®.


Journal of Physical Chemistry B | 2013

Study of the structural role of gallium and aluminum in 45S5 bioactive glasses by molecular dynamics simulations.

Gianluca Malavasi; Alfonso Pedone; Maria Cristina Menziani

The structural properties of phosphosilicate glasses based on the 45S5 Bioglass doped with gallium and aluminum (46.2 SiO2·24.3Na2O·26.9CaO·2.6P2O5·1.0X2O3, X = Ga or Al) are investigated by means of classical molecular dynamics simulations. Structural features of the two compositions are compared with those of the original 45S5 Bioglass in order to relate them to the different known bioactivities of these materials. Differences in the coordination environments of Ga and Al, network connectivity, and ion aggregation reveal a microscopic model of these glasses which supports the interpretation of the experimental data and provides new insight into the different biological behaviors of Ga- and Al-containing phosphosilicate glasses. Although Ga is found predominantly in a 4-fold coordination environment, small amounts of 5- and 6-fold coordinated atoms have been detected depending on the interatomic potential model employed. This suggests its possible intermediate role in phosphosilicate glasses. On the contrary, Al plays a network former role and leads to glasses with a more polymerized structure. Interestingly, the results show an increased propensity for aggregation of the Ca(2+) and PO4(3-) ions in the Al-containing phosphosilicate glasses with respect to the Ga-containing ones. This leads to insoluble calcium-phosphate-rich regions not detected in the bioactive glasses.


Journal of Physical Chemistry B | 2009

Quantitative Structure-Property Relationships of Potentially Bioactive Fluoro Phospho-silicate Glasses

Gigliola Lusvardi; Gianluca Malavasi; F. Tarsitano; Ledi Menabue; Maria Cristina Menziani; Alfonso Pedone

In this work, the glass transition temperature and chemical durability of bioactive phospho-silicate glasses were experimentally determined and correlated to the structural descriptor Fnet derived from classical molecular dynamics simulations. The replacement of CaF2 for Na2O in the parent glass 45S5 enhances both chemical durability and density, while the replacement of CaF2 for CaO lowers chemical durability. The proposed descriptor, Fnet, provides satisfactorily correlations with glass transition temperature and chemical durability over a wide range of compositions.


RSC Advances | 2013

Computational simulations of solid state NMR spectra: a new era in structure determination of oxide glasses

Thibault Charpentier; Maria Cristina Menziani; Alfonso Pedone

The application of the MD–GIPAW approach to the calculation of NMR parameters, line widths and shapes of the spectra of oxide glasses is reviewed. Emphasis is given to the decisive role of this approach both as an interpretative tool for a deeper understanding of the spectral behavior of complex systems and as a predictive instrument to map NMR data in a distribution of structural parameters and vice versa (structural inversion method). After a brief overview of the basic features of oxide glasses and the experimental techniques routinely employed to investigate their structure, a general description of the computational methods usually adopted to generate sound structural models of amorphous materials is offered. The computational recipe used to compute the solid state NMR spectra of oxide glasses and to establish quantitative structural-NMR property relationships is then described. Finally, these concepts are applied to ‘simple’ network former glasses and more complex silicates, aluminosilicate, phosphosilicate and borosilicate glasses of scientific relevance. The final section is dedicated to the future developments that will hopefully improve the computational approach described overcoming some of the current limitations.


Journal of Physical Chemistry B | 2015

Evidence of Catalase Mimetic Activity in Ce3+/Ce4+ Doped Bioactive Glasses

Valentina Nicolini; Elisa Gambuzzi; Gianluca Malavasi; Ledi Menabue; Maria Cristina Menziani; Gigliola Lusvardi; Alfonso Pedone; Francesco Benedetti; P. Luches; Sergio D’Addato; S. Valeri

The ability of Ce-containing bioactive glasses to inhibit oxidative stress in terms of reduction of hydrogen peroxide, by mimicking the catalase enzyme activity is demonstrated here for the first time. The antioxidant properties of three bioactive glasses containing an increasing amount of CeO2 have been evaluated by following the degradation of hydrogen peroxide with time after immersion in H2O2 aqueous solutions with different concentration. XPS and UV-vis measurements allowed us to determine the Ce(3+)/Ce(4+) ratio in the bulk and on the glass surface, and to correlate it with the ability of the samples to show catalase mimetic activity. Interestingly, we have found that the bioactive glass with composition 23.2Na2O-25.7CaO-43.4SiO2-2.4P2O5-5.3CeO2 immersed in 0.1 M H2O2 aqueous solution is able to degrade 90% of it in 1 week. The reduction in bioactivity of the glasses with increasing CeO2 content is here rationalized in terms of a lower amount of phosphate groups available for the hydroxyapatite layer formation, after binding with cerium ions. In fact, classical molecular dynamics simulations revealed that the addition of CeO2 leads to the formation of cerium phosphate rich regions. The formation of an insoluble CePO4 crystalline phase is also observed by XRD analysis after thermal treatment of the glass samples.


Theoretical Chemistry Accounts | 2012

First-principles simulations of the 27Al and 17O solid-state NMR spectra of the CaAl2Si3O10 glass

Alfonso Pedone; Elisa Gambuzzi; Gianluca Malavasi; Maria Cristina Menziani

The local and medium-range structure of the 20CaO·20Al2O3·60SiO2 glass generated by classical molecular dynamics simulations has been compared to NMR experiments by computing the 27Al and 17O NMR parameters and NMR spectra from first-principles simulations. The calculation of the NMR parameters (chemical shielding and quadrupolar parameters), which are then used to simulate solid-state MAS and 3QMAS NMR spectra, is achieved by the gauge including projector augmented-wave and the projector augmented-wave methods on the DFT-PBE relaxed structure. The NMR spectra calculated with the present approach are found to be in excellent agreement with the experimental data, providing an unambiguous view of the local and medium-range structure of aluminosilicate glasses.


Bioorganic & Medicinal Chemistry | 1997

α1-Adrenoceptor subtype selectivity: Molecular modelling and theoretical quantitative structure—affinity relationships

P.G. De Benedetti; Francesca Fanelli; Maria Cristina Menziani; Marina Cocchi; Rodolfo Testa; Amedeo Leonardi

This study constitutes a preliminary rationalization, at the molecular level, of antagonist selectivity towards the three cloned alpha 1-adrenergic receptor (alpha 1-AR) subtypes. Molecular dynamics simulations allowed a structural/dynamics analysis of the seven alpha-helix-bundle models of the bovine alpha 1a-, hamster alpha 1b-, and rat alpha 1d-AR subtypes. The results showed that the transmembrane domains of these subtypes have different dynamic behaviours and different topographies of the binding sites, which are mainly constituted by conserved residues. In particular, the alpha 1a-AR binding site is more flexible and topographically different with respect to the other two subtypes. The results of the theoretical structural/dynamics analysis of the isolated receptors are consistent with the binding affinities of the 16 antagonists tested towards the three cloned alpha 1-AR subtypes. Moreover, the theoretical quantitative structure-affinity relationships obtained from the antagonist-receptor interaction models further corroborates the hypothesis that selectivity towards one preferential subtype is mainly modulated by receptor and/or ligand distortion energies. In other words, subtype selectivity seems to be mainly guided by the dynamic complementarity (induced fit) between ligand and receptor. On the basis of the quantitative models presented it is possible to predict both affinities and selectivities of putative alpha 1-AR ligands as well as to estimate the theoretical alpha 1-AR subtype affinities and selectivities of existing antagonists.

Collaboration


Dive into the Maria Cristina Menziani's collaboration.

Top Co-Authors

Avatar

Alfonso Pedone

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Marina Cocchi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Gianluca Malavasi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Ledi Menabue

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Gigliola Lusvardi

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesca Fanelli

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesca De Rienzo

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Davide Presti

University of Modena and Reggio Emilia

View shared research outputs
Top Co-Authors

Avatar

Francesco Muniz-Miranda

University of Modena and Reggio Emilia

View shared research outputs
Researchain Logo
Decentralizing Knowledge