Network


Latest external collaboration on country level. Dive into details by clicking on the dots.

Hotspot


Dive into the research topics where Maria E. Banks is active.

Publication


Featured researches published by Maria E. Banks.


Science | 2007

A Closer Look at Water-Related Geologic Activity on Mars

Alfred S. McEwen; Carl J. Hansen; W. A. Delamere; Eric M. Eliason; Kenneth E. Herkenhoff; Laszlo P. Keszthelyi; V. C. Gulick; R. L. Kirk; Michael T. Mellon; John A. Grant; Nicolas Thomas; Catherine M. Weitz; Steven W. Squyres; Nathan T. Bridges; Scott L. Murchie; F. P. Seelos; Kimberly D. Seelos; Chris H. Okubo; Moses Pollen Milazzo; Livio L. Tornabene; Windy L. Jaeger; Shane Byrne; Patrick Russell; J. L. Griffes; Sara Martínez-Alonso; A. Davatzes; Frank C. Chuang; B. J. Thomson; Kathryn Elspeth Fishbaugh; Colin M. Dundas

Water has supposedly marked the surface of Mars and produced characteristic landforms. To understand the history of water on Mars, we take a close look at key locations with the High-Resolution Imaging Science Experiment on board the Mars Reconnaissance Orbiter, reaching fine spatial scales of 25 to 32 centimeters per pixel. Boulders ranging up to ∼2 meters in diameter are ubiquitous in the middle to high latitudes, which include deposits previously interpreted as finegrained ocean sediments or dusty snow. Bright gully deposits identify six locations with very recent activity, but these lie on steep (20° to 35°) slopes where dry mass wasting could occur. Thus, we cannot confirm the reality of ancient oceans or water in active gullies but do see evidence of fluvial modification of geologically recent mid-latitude gullies and equatorial impact craters.


Geology | 2012

Planet-wide sand motion on Mars

Nathan T. Bridges; Mary C. Bourke; Paul E. Geissler; Maria E. Banks; Cindy Colon; Serina Diniega; Matthew P. Golombek; Candice J. Hansen; Sarah S. Mattson; Alfred S. McEwen; Michael T. Mellon; N. W. Stantzos; B. J. Thomson

Prior to Mars Reconnaissance Orbiter data, images of Mars showed no direct evidence for dune and ripple motion. This was consistent with climate models and lander measurements indicating that winds of sufficient intensity to mobilize sand were rare in the low-density atmosphere. We show that many sand ripples and dunes across Mars exhibit movement of as much as a few meters per year, demonstrating that Martian sand migrates under current conditions in diverse areas of the planet. Most motion is probably driven by wind gusts that are not resolved in global circulation models. A past climate with a thicker atmosphere is only required to move large ripples that contain coarse grains.


Science | 2010

Evidence of Recent Thrust Faulting on the Moon Revealed by the Lunar Reconnaissance Orbiter Camera

Thomas R. Watters; Mark S. Robinson; Ross A. Beyer; Maria E. Banks; James F. Bell; M. E. Pritchard; Harald Hiesinger; Carolyn H. van der Bogert; Peter C. Thomas; Elizabeth P. Turtle; Nathan Williams

Lunar Lobate Scarps Revealed Lunar lobate scarps are relatively small-scale landforms that are thought to be formed by tectonic thrust faulting. Previously, lunar lobate scarps could only be identified clearly in high-resolution Apollo Panoramic Camera images confined to the lunar equatorial zone. Now, an analysis by Watters et al. (p. 936) of images returned by the Lunar Reconnaissance Orbiter Camera reveals 14 previously unknown lobate scarps and shows that lunar lobate scarps may be globally distributed. Their appearance suggests that lunar scarps are relatively young landforms (less than 1 Ga), possibly formed during a recent episode of global lunar radial contraction. The relatively young age of the faults and their distribution suggest global, late-stage contraction of the Moon. Lunar Reconnaissance Orbiter Camera images reveal previously undetected lobate thrust-fault scarps and associated meter-scale secondary tectonic landforms that include narrow extensional troughs or graben, splay faults, and multiple low-relief terraces. Lobate scarps are among the youngest landforms on the Moon, based on their generally crisp appearance, lack of superposed large-diameter impact craters, and the existence of crosscut small-diameter impact craters. Identification of previously known scarps was limited to high-resolution Apollo Panoramic Camera images confined to the equatorial zone. Fourteen lobate scarps were identified, seven of which are at latitudes greater than ±60°, indicating that the thrust faults are globally distributed. This detection, coupled with the very young apparent age of the faults, suggests global late-stage contraction of the Moon.


Journal of Geophysical Research | 2010

Crater population and resurfacing of the Martian north polar layered deposits

Maria E. Banks; Shane Byrne; Kapil Galla; Alfred S. McEwen; Veronica J. Bray; Colin M. Dundas; Kathryn Elspeth Fishbaugh; Kenneth E. Herkenhoff; Bruce C. Murray

Present-day accumulation in the north polar layered deposits (NPLD) is thought to occur via deposition on the north polar residual cap. Understanding current mass balance in relation to current climate would provide insight into the climatic record of the NPLD. To constrain processes and rates of NPLD resurfacing, a search for craters was conducted using images from the Mars Reconnaissance Orbiter Context Camera. One hundred thirty craters have been identified on the NPLD, 95 of which are located within a region defined to represent recent accumulation. High Resolution Imaging Science Experiment images of craters in this region reveal a morphological sequence of crater degradation that provides a qualitative understanding of processes involved in crater removal. A classification system for these craters was developed based on the amount of apparent degradation and infilling and where possible depth/diameter ratios were determined. The temporal and spatial distribution of crater degradation is interpreted to be close to uniform. Through comparison of the size-frequency distribution of these craters with the expected production function, the craters are interpreted to be an equilibrium population with a crater of diameter D meters having a lifetime of ~30.75D^(1.14) years. Accumulation rates within these craters are estimated at 7.2D^(−0.14) mm/yr, which corresponds to values of ~3–4 mm/yr and are much higher than rates thought to apply to the surrounding flat terrain. The current crater population is estimated to have accumulated in the last ~20 kyr or less.


Geophysical Research Letters | 2016

Widespread effusive volcanism on Mercury likely ended by about 3.5 Ga: End of effusive volcanism on Mercury

Paul K. Byrne; Lillian R. Ostrach; Caleb I. Fassett; Clark R. Chapman; Brett W. Denevi; Alexander J. Evans; Christian Klimczak; Maria E. Banks; James W. Head; Sean C. Solomon

Crater size–frequency analyses have shown that the largest volcanic plains deposits on Mercury were emplaced around 3.7 Ga, as determined with recent model production function chronologies for impact crater formation on that planet. To test the hypothesis that all major smooth plains on Mercury were emplaced by about that time, we determined crater size–frequency distributions for the nine next-largest deposits, which we interpret also as volcanic. Our crater density measurements are consistent with those of the largest areas of smooth plains on the planet. Model ages based on recent crater production rate estimates for Mercury imply that the main phase of plains volcanism on Mercury had ended by ~3.5 Ga, with only small-scale volcanism enduring beyond that time. Cessation of widespread effusive volcanism is attributable to interior cooling and contraction of the innermost planet.


Journal of Geophysical Research | 2015

Duration of activity on lobate-scarp thrust faults on Mercury: Thrust Fault Activity on Mercury

Maria E. Banks; Zhiyong Xiao; Thomas R. Watters; Robert G. Strom; Sarah E. Braden; Clark R. Chapman; Sean C. Solomon; Christian Klimczak; Paul K. Byrne

Lobate scarps, landforms interpreted as the surface manifestation of thrust faults, are widely distributed across Mercury and preserve a record of its history of crustal deformation. Their formation is primarily attributed to the accommodation of horizontal shortening of Mercurys lithosphere in response to cooling and contraction of the planets interior. Analyses of images acquired by the Mariner 10 and MErcury Surface, Space ENvironment, GEochemistry, and Ranging (MESSENGER) spacecraft during flybys of Mercury showed that thrust faults were active at least as far back in time as near the end of emplacement of the largest expanses of smooth plains. However, the full temporal extent of thrust fault activity on Mercury, particularly the duration of this activity following smooth plains emplacement, remained poorly constrained. Orbital images from the MESSENGER spacecraft reveal previously unrecognized stratigraphic relations between lobate scarps and impact craters of differing ages and degradation states. Analysis of these stratigraphic relations indicates that contraction has been a widespread and long-lived process on the surface of Mercury. Thrust fault activity had initiated by a time near the end of the late heavy bombardment of the inner solar system and continued through much or all of Mercurys subsequent history. Such deformation likely resulted from the continuing secular cooling of Mercurys interior.


Geology | 2015

Global thrust faulting on the Moon and the influence of tidal stresses

Thomas R. Watters; Mark S. Robinson; G. C. Collins; Maria E. Banks; Katie Daud; Nathan Williams; Michelle M. Selvans

Lunar Reconnaissance Orbiter Camera images reveal a vast, globally distributed network of over 3200 lobate thrust fault scarps, making them the most common tectonic landform on the Moon. Based on their small scale and crisp appearance, crosscutting relations with small-diameter impact craters, and rates of infilling of associated small, shallow graben, these fault scarps are estimated to be younger than 50 Ma and may be actively forming today. The non-random distribution of the scarp orientations is inconsistent with isotropic stresses from late-stage global contraction as the sole source of stress. We propose that tidal stresses contribute significantly to the current stress state of the lunar crust. Orbital recession stresses superimposed on stresses from global contraction with the addition of diurnal tidal stresses result in non-isotropic compressional stress and thrust faults consistent with lobate scarp orientations. The addition of diurnal tidal stresses at apogee result in peak stresses that may help trigger coseismic slip events on currently active thrust faults on the Moon.


Geophysical Research Letters | 2015

Distribution of large‐scale contractional tectonic landforms on Mercury: Implications for the origin of global stresses

Thomas R. Watters; Michelle M. Selvans; Maria E. Banks; Steven A. Hauck; Kris J. Becker; Mark S. Robinson

The surface of Mercury is dominated by contractional tectonic landforms that are evidence of global-scale crustal deformation. Using MESSENGER orbital high-incidence angle imaging and topographic data, large-scale lobate thrust fault scarps have been mapped globally. The spatial distribution and areal density of the contractional landforms are not uniform; concentrations occur in longitudinal bands and between the north and south hemispheres. Their orientations are generally north-south at low latitude to midlatitude and east-west at high latitudes. The spatial distribution and distribution of orientations of these large-scale contractional features suggest that planet-wide contraction due to interior cooling cannot be the sole source of global stresses. The nonrandom orientations are best explained by a combination of stresses from global contraction and tidal despinning combined with an equator-to-pole variation in lithospheric thickness, while the nonuniform areal density of the contractional features may indicate the influence of mantle downwelling or heterogeneities in lithospheric strength.


Astrobiology | 2016

The Argyre Region as a Prime Target for in situ Astrobiological Exploration of Mars

Alberto G. Fairén; James M. Dohm; J. Alexis P. Rodriguez; Esther R. Uceda; Jeffrey S. Kargel; Richard J. Soare; H. James Cleaves; Dorothy Z. Oehler; Dirk Schulze-Makuch; Elhoucine Essefi; Maria E. Banks; Goro Komatsu; Wolfgang Fink; Stuart J. Robbins; Jianguo Yan; Hideaki Miyamoto; Shigenori Maruyama; Victor R. Baker

At the time before ∼3.5 Ga that life originated and began to spread on Earth, Mars was a wetter and more geologically dynamic planet than it is today. The Argyre basin, in the southern cratered highlands of Mars, formed from a giant impact at ∼3.93 Ga, which generated an enormous basin approximately 1800 km in diameter. The early post-impact environment of the Argyre basin possibly contained many of the ingredients that are thought to be necessary for life: abundant and long-lived liquid water, biogenic elements, and energy sources, all of which would have supported a regional environment favorable for the origin and the persistence of life. We discuss the astrobiological significance of some landscape features and terrain types in the Argyre region that are promising and accessible sites for astrobiological exploration. These include (i) deposits related to the hydrothermal activity associated with the Argyre impact event, subsequent impacts, and those associated with the migration of heated water along Argyre-induced basement structures; (ii) constructs along the floor of the basin that could mark venting of volatiles, possibly related to the development of mud volcanoes; (iii) features interpreted as ice-cored mounds (open-system pingos), whose origin and development could be the result of deeply seated groundwater upwelling to the surface; (iv) sedimentary deposits related to the formation of glaciers along the basins margins, such as evidenced by the ridges interpreted to be eskers on the basin floor; (v) sedimentary deposits related to the formation of lakes in both the primary Argyre basin and other smaller impact-derived basins along the margin, including those in the highly degraded rim materials; and (vi) crater-wall gullies, whose morphology points to a structural origin and discharge of (wet) flows.


Icarus | 2010

The High Resolution Imaging Science Experiment (HiRISE) during MRO’s Primary Science Phase (PSP)

Alfred S. McEwen; Maria E. Banks; Nicole Faith Baugh; Kris J. Becker; Aaron K. Boyd; James W. Bergstrom; Ross A. Beyer; Edward Bortolini; Nathan T. Bridges; Shane Byrne; Bradford Castalia; Frank C. Chuang; Larry S. Crumpler; Ingrid Daubar; Alix K. Davatzes; Donald G. Deardorff; Alaina DeJong; W. Alan Delamere; Eldar Zeev Noe Dobrea; Colin M. Dundas; Eric M. Eliason; Yisrael Espinoza; Audrie Fennema; Kathryn Elspeth Fishbaugh; Terry Forrester; Paul E. Geissler; John A. Grant; J. L. Griffes; John P. Grotzinger; V. C. Gulick

Collaboration


Dive into the Maria E. Banks's collaboration.

Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Clark R. Chapman

Southwest Research Institute

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar

Laszlo P. Keszthelyi

United States Geological Survey

View shared research outputs
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Top Co-Authors

Avatar
Researchain Logo
Decentralizing Knowledge